Download Free Zintl Phases With Complex Structure Book in PDF and EPUB Free Download. You can read online Zintl Phases With Complex Structure and write the review.

Seven chapters report current research into the phases and ions of a class of compounds that are electronically positioned between the intermetallic compounds and insulating valence compounds. They cover structure and bonding at the Zintl border, structural patterns of homo- and hetero-nuclear anions and related intermetallic compounds and concepts for interpreting them, the early p-block elements, polyanions in liquid ionic alloys, molecular transition metal complexes, transition metal compounds, and synthesizing and characterizing intermetallic materials using Zintl phases as precursors. An introduction surveys the life and work of German chemist Eduard Zintl (1898-1941). Annotation copyright by Book News, Inc., Portland, OR
Encyclopedia of the Alkaline Earth Compounds is a compilation describing the physical and chemical properties of all of the alkaline earth compounds that have been elucidated to date in the scientific literature. These compounds are used in applications such as LEDs and electronic devices such as smart phones and tablet computers. Preparation methods for each compound are presented to show which techniques have been successful. Structures and phase diagrams are presented where applicable to aid in understanding the complexities of the topics discussed. With concise descriptions presenting the chemical, physical and electrical properties of any given compound, this subject matter will serve as an introduction to the field. This compendium is vital for students and scientific researchers in all fields of scientific endeavors, including non-chemists. 2013 Honorable Mention in Chemistry & Physics from the Association of American Publishers' PROSE Awards Presents a systematic coverage of all known alkaline earth inorganic compounds and their properties Provides a clear, consistent presentation based on groups facilitatating easy comparisons Includes the structure of all the compounds in high quality full-color graphics Summarizes all currently known properties of the transition metals compounds Lists the uses and applications of these compounds in electronics, energy, and catalysis
Due to their good mechanical characteristics in terms of stiffness and strength coupled with mass-saving advantage and other attractive physico-chemical properties, composite materials are successfully used in medicine and nanotechnology fields. To this end, the chapters composing the book have been divided into the following sections: medicine, dental and pharmaceutical applications; nanocomposites for energy efficiency; characterization and fabrication, all of which provide an invaluable overview of this fascinating subject area. The book presents, in addition, some studies carried out in orthopedic and stomatological applications and others aiming to design and produce new devices using the latest advances in nanotechnology. This wide variety of theoretical, numerical and experimental results can help specialists involved in these disciplines to enhance competitiveness and innovation.
D. Santamaría-Pérez and F. Liebau : Structural relationships between intermetallic clathrates, porous tectosilicates and clathrates hydrates Vladislav A. Blatov: Crystal structures of inorganic oxoacid salts perceived as cation arrays: a periodic graph approach Ángel Vegas: FeLiPO4: Dissection of a crystal structure. The parts and the whole D. J. M. Bevan, R. L. Martin, Ángel Vegas: Rationalisation of the substructures derived from the three fluorite-related [Li6(MVLi)N4] polymorphs: An analysis in terms of the “Bärnighausen Trees” and of the “Extended Zintl-Klemm Concept” Ángel Vegas: Concurrent pathways in the phase transitions of alloys and oxides: Towards an Unified Vision of Inorganic Solids
Handbook on the Physics and Chemistry of Rare Earths: Including Actinides, Volume 60 presents the latest release in this continuous series that covers all aspects of rare earth science, including chemistry, life sciences, materials science and physics. - Presents up-to-date overviews and new developments in the field of rare earths, covering both their physics and chemistry - Contains individual chapters that are comprehensive and broad, along with critical reviews - Provides contributions from highly experienced, invited experts
Explore the theory and applications of superatomic clusters and cluster assembled materials Superatoms: Principles, Synthesis and Applications delivers an insightful and exciting exploration of an emerging subfield in cluster science, superatomic clusters and cluster assembled materials. The book presents discussions of the fundamentals of superatom chemistry and their application in catalysis, energy, materials science, and biomedical sciences. Readers will discover the foundational significance of superatoms in science and technology and learn how they can serve as the building blocks of tailored materials, promising to usher in a new era in materials science. The book covers topics as varied as the thermal and thermoelectric properties of cluster-based materials and clusters for CO2 activation and conversion, before concluding with an incisive discussion of trends and directions likely to dominate the subject of superatoms in the coming years. Readers will also benefit from the inclusion of: A thorough introduction to the rational design of superatoms using electron-counting rules Explorations of superhalogens, endohedrally doped superatoms and assemblies, and magnetic superatoms A practical discussion of atomically precise synthesis of chemically modified superatoms A concise treatment of superatoms as the building blocks of 2D materials, as well as superatom-based ferroelectrics and cluster-based materials for energy harvesting and storage Perfect for academic researchers and industrial scientists working in cluster science, energy materials, thermoelectrics, 2D materials, and CO2 conversion, Superatoms: Principles, Synthesis and Applications will also earn a place in the libraries of interested professionals in chemistry, physics, materials science, and nanoscience.
This book presents and facilitates the interchange of new research and development results concerned with hot topics in thermoelectric generators (TEGs) research, development and production. Topics include prospective thermoelectric materials for manufacturing TEGs operating in low-, mid-, and high temperature ranges, thermal and mechanical degradation issues in prospective thermoelectric materials and TEG modules, theoretical study of novel inorganic and organic thermoelectric materials, novel methods and apparatus for measuring performance of thermoelectric materials and TEGs, and thermoelectric power generators simulation, modeling, design and practice.This book helps researchers tackle the challenges that still remain in creating cheap and effective TEGs and presents the latest trends and technologies in development and production of advanced thermoelectric generation devices. Provides a concentration of new research and development in the field of Thermoelectric energy generation; Facilitates the interchange of new ideas and results to react effectively to the challenges of Thermoelectric generators; Explains both the advancements and challenges in TEGs.
This book provides an overview on nanostructured thermoelectric materials and devices, covering fundamental concepts, synthesis techniques, device contacts and stability, and potential applications, especially in waste heat recovery and solar energy conversion. The contents focus on thermoelectric devices made from nanomaterials with high thermoelectric efficiency for use in large scale to generate megawatts electricity. Covers the latest discoveries, methods, technologies in materials, contacts, modules, and systems for thermoelectricity. Addresses practical details of how to improve the efficiency and power output of a generator by optimizing contacts and electrical conductivity. Gives tips on how to realize a realistic and usable device or module with attention to large scale industry synthesis and product development. Prof. Zhifeng Ren is M. D. Anderson Professor in the Department of Physics and the Texas Center for Superconductivity at the University of Houston. Prof. Yucheng Lan is an associate professor in Morgan State University. Prof. Qinyong Zhang is a professor in the Center for Advanced Materials and Energy at Xihua University of China.
Zeitschrift für Kristallographie. Supplement Volume 39 presents the complete Abstracts of all contributions to the 27th Annual Conference of the German Crystallographic Society in Leipzig (Germany) 2019: - Plenary Talks - Microsymposia - Poster Session Supplement Series of Zeitschrift für Kristallographie publishes Abstracts of international conferences on the interdisciplinary field of crystallography.
In recent years, novel families of materials have been discovered and significant improvements in classical thermoelectric materials have been made. Thermoelectric generators are now being used to harvest industrial heat waste and convert it into electricity. This is being utilized in communal incinerators, large smelters, and cement plants. Leading car and truck companies are developing thermoelectric power generators to collect heat from the exhaust systems of gasoline and diesel engines. Additionally, thermoelectric coolers are being used in a variety of picnic boxes, vessels used to transport transplant organs, and in air-conditioned seats of mid-size cars. Consisting of twenty-one chapters written by top researchers in the field, this book explores the major advancements being made in the material aspects of thermoelectricity and provides a critical assessment in regards to the broadening of application opportunities for thermoelectric energy conversion.