Download Free Zif 8 Based Materials For Water Decontamination Book in PDF and EPUB Free Download. You can read online Zif 8 Based Materials For Water Decontamination and write the review.

This second volume of Metal-Organic Framework Composites focusses on water pollution as a major concern and endangerment to human health and the application of MOFs for remediation. Metal-organic frameworks (MOFs) are advanced porous materials and are promising adsorbents with facile modifications, high specific surface area, controllable porosity, and tailored surface properties. The authors systematically cover the synthesis of ZIF-8 base composites and discuss the role of ZIF-8 composites in water decontamination as an adsorbent and photocatalyst.
This book aims to provide a fundamental grasp of graphene-based materials (GAMs) and their adsorption process. The effect of diverse process parameters, including pH, temperature, agitation, competing ions, etc., on the adsorption performance of GAMs as well as their recent and relevant applications in biomedical fields, are discussed. The current challenges and future outlook have been addressed as an independent chapter, and the recyclability of these adsorbent materials has also been covered. Features: Focuses on graphene-based materials as adsorbents to remove contaminants from wastewater. Includes detailed computational and statistical analyses and cost comparison points. Compares the performance of graphene-based materials as adsorbents in the context of various other reported adsorbents, including other 2D materials, such as WS2 and BN. Provides fundamental comprehension of the graphene-based materials’ adsorption process. Discusses the recyclable nature of graphene-based materials, as well as approaches used. This book has been aimed at graduate students and researchers in wastewater treatment, environmental, materials, and chemical engineering.
Membrane technologies are currently the most effective and sustainable methods utilized in diversified water filtration, wastewater treatment, as well as industrial and sustainable energy applications. This book covers essential subsections of membrane separation and bioseparation processes from the perspectives of technical innovation, novelty, and sustainability. The book offers a comprehensive overview of the latest improvements and concerns with respect to membrane fouling remediation techniques, issues of bioincompatibility for biomedical applications, and various subareas of membrane separation processes, which will be an efficient resource for engineers.
The growth of interest in newly developed porous materials has prompted the writing of this book for those who have the need to make meaningful measurements without the benefit of years of experience. One might consider this new book as the 4th edition of "Powder Surface Area and Porosity" (Lowell & Shields), but for this new edition we set out to incorporate recent developments in the understanding of fluids in many types of porous materials, not just powders. Based on this, we felt that it would be prudent to change the title to "Characterization of Porous Solids and Powders: Surface Area, Porosity and Density". This book gives a unique overview of principles associated with the characterization of solids with regard to their surface area, pore size, pore volume and density. It covers methods based on gas adsorption (both physi and chemisorption), mercury porosimetry and pycnometry. Not only are the theoretical and experimental basics of these techniques presented in detail but also, in light of the tremendous progress made in recent years in materials science and nanotechnology, the most recent developments are described. In particular, the application of classical theories and methods for pore size analysis are contrasted with the most advanced microscopic theories based on statistical mechanics (e.g. Density Functional Theory and Molecular Simulation). The characterization of heterogeneous catalysts is more prominent than in earlier editions; the sections on mercury porosimetry and particularly chemisorption have been updated and greatly expanded.
This book aims at illustrating several examples of different membrane compositions ranging from inorganic, polymeric, metallic, metal organic framework, and composite which have been successfully deployed to separate industrially relevant gas mixtures including hydrogen, nitrogen, methane, carbon dioxide, olefins/parafins among others. Each book chapter highlights some of the current and key fundamental and technological challenges for these membranes that must be overcome in order to envision its application at industrial level.
İnternational Research in Engineering Sciences III
Rapid population growth, urbanisation and industrialisation have caused serious problems in terms of water pollution and the supply of safe water. Solutions for monitoring pollutants in water and for removing them are urgently needed and they must be both efficient and sustainable. Recent advances in emerging environmental nanotechnologies provide promising solutions for these issues. The physical and chemical properties of nanomaterials can be tailored by controlling attributes such as their size, shape, composition, and surface, so that they can be both highly specific and highly efficient. This makes them perfect platforms for a variety of environmental applications including sensing, treatment and remediation. Providing an array of cutting-edge nanotechnology research in water applications, including sensing, treatment, and remediation, as well as a discussion of progress in the rational design and engineering of nanomaterials for environmental applications, this book is a valuable reference for researchers working in applications for nanotechnology, environmental chemistry and environmental engineering as well as those working in the water treatment industry.
Nanomaterials for the Detection and Removal of Wastewater Pollutants assesses the role of nanotechnology and nanomaterials in improving both the detection and removal of inorganic and organic contaminants from wastewater that originates from municipal and industrial plants. The book covers how nanotechnology is being used to remove common contaminants, including dyes, chlorinated solvents, nitrites/nitrates, and emerging contaminants, such as pharmaceuticals, personal care products and pesticides. Sections cover nanofiltration, adsorption and remediation. Nanomaterial immobilization recovery is also addressed, along with the quantification of heat/mass transport limitations, sizing aspects and transport phenomena. Finally, regulatory aspects regarding contaminants and nanoparticles in the environment are covered. This book is an important resource for both materials scientists and environmental scientists looking to see how nanotechnology can play a role in making wastewater a less hazardous part of the global ecosystem. - Addresses the role of new nanotechnology-based solutions for the detection and removal of common and emerging contaminants - Discusses the environmental impact of nanoparticles used in wastewater contaminant detection and removal - Explores the major challenges for using nanomaterials to detect and remove contaminants from wastewater