Download Free Zeta Functions In Algebra And Geometry Book in PDF and EPUB Free Download. You can read online Zeta Functions In Algebra And Geometry and write the review.

This book contains accounts of work presented during the research conference, ``Zeta Functions in Geometry,'' held at the Tokyo Institute of Technology in August 1990. The aim of the conference was to provide an opportunity for the discussion of recent results by geometers and number theorists on zeta functions in several different categories. The exchange of ideas produced new insights on various geometric zeta functions, as well as the classical zeta functions. The zeta functions covered here are the Selberg zeta functions, the Ihara zeta functions, spectral zeta functions, and those associated with prehomogeneous vector spaces. Accessible to graduate students with background in geometry and number theory, Zeta Functions in Geometry will prove useful for its presentation of new results and up-to-date surveys.
Contains the proceedings of the Second International Workshop on Zeta Functions in Algebra and Geometry held May 3-7, 2010 at the Universitat de les Illes Balears, Palma de Mallorca, Spain. The conference focused on the following topics: arithmetic and geometric aspects of local, topological, and motivic zeta functions, Poincare series of valuations, zeta functions of groups, rings, and representations, prehomogeneous vector spaces and their zeta functions, and height zeta functions.
This volume contains papers by invited speakers of the symposium "Zeta Functions, Topology and Quantum Physics" held at Kinki U- versity in Osaka, Japan, during the period of March 3-6, 2003. The aims of this symposium were to establish mutual understanding and to exchange ideas among researchers working in various fields which have relation to zeta functions and zeta values. We are very happy to add this volume to the series Developments in Mathematics from Springer. In this respect, Professor Krishnaswami Alladi helped us a lot by showing his keen and enthusiastic interest in publishing this volume and by contributing his paper with Alexander Berkovich. We gratefully acknowledge financial support from Kinki University. We would like to thank Professor Megumu Munakata, Vice-Rector of Kinki University, and Professor Nobuki Kawashima, Director of School of Interdisciplinary Studies of Science and Engineering, Kinki Univ- sity, for their interest and support. We also thank John Martindale of Springer for his excellent editorial work.
The original zeta function was studied by Riemann as part of his investigation of the distribution of prime numbers. Other sorts of zeta functions were defined for number-theoretic purposes, such as the study of primes in arithmetic progressions. This led to the development of $L$-functions, which now have several guises. It eventually became clear that the basic construction used for number-theoretic zeta functions can also be used in other settings, such as dynamics, geometry, and spectral theory, with remarkable results. This volume grew out of the special session on dynamical, spectral, and arithmetic zeta functions held at the annual meeting of the American Mathematical Society in San Antonio, but also includes four articles that were invited to be part of the collection. The purpose of the meeting was to bring together leading researchers, to find links and analogies between their fields, and to explore new methods. The papers discuss dynamical systems, spectral geometry on hyperbolic manifolds, trace formulas in geometry and in arithmetic, as well as computational work on the Riemann zeta function. Each article employs techniques of zeta functions. The book unifies the application of these techniques in spectral geometry, fractal geometry, and number theory. It is a comprehensive volume, offering up-to-date research. It should be useful to both graduate students and confirmed researchers.
The amount of mathematics invented for number-theoretic reasons is impressive. It includes much of complex analysis, the re-foundation of algebraic geometry on commutative algebra, group cohomology, homological algebra, and the theory of motives. Zeta and L-functions sit at the meeting point of all these theories and have played a profound role in shaping the evolution of number theory. This book presents a big picture of zeta and L-functions and the complex theories surrounding them, combining standard material with results and perspectives that are not made explicit elsewhere in the literature. Particular attention is paid to the development of the ideas surrounding zeta and L-functions, using quotes from original sources and comments throughout the book, pointing the reader towards the relevant history. Based on an advanced course given at Jussieu in 2013, it is an ideal introduction for graduate students and researchers to this fascinating story.
This book is an introductory presentation to the theory of local zeta functions. Viewed as distributions, and mostly in the archimedean case, local zeta functions are also called complex powers. The volume contains major results on analytic and algebraic properties of complex powers by Atiyah, Bernstein, I. M. Gelfand, S. I. Gelfand, and Sato. Chapters devoted to $p$-adic local zeta functions present Serre's structure theorem, a rationality theorem, and many examples found by the author. The presentation concludes with theorems by Denef and Meuser. Information for our distributors: Titles in this series are co-published with International Press, Cambridge, MA.
The main objective of this paper is to prove the monodromy conjecture for the local Igusa zeta function of a quasi-ordinary polynomial of arbitrary dimension defined over a number field. In order to do it, we compute the local Denef-Loeser motivic zeta function $Z_{\text{DL}}(h,T)$ of a quasi-ordinary power series $h$ of arbitrary dimension over an algebraically closed field of characteristic zero from its characteristic exponents without using embedded resolution of singularities. This allows us to effectively represent $Z_{\text{DL}}(h,T)=P(T)/Q(T)$ such that almost all the candidate poles given by $Q(T)$ are poles. Anyway, these candidate poles give eigenvalues of the monodromy action on the complex $R\psi_h$ of nearby cycles on $h^{-1}(0).$ In particular we prove in this case the monodromy conjecture made by Denef-Loeser for the local motivic zeta function and the local topological zeta function. As a consequence, if $h$ is a quasi-ordinary polynomial defined over a number field we prove the Igusa monodromy conjecture for its local Igusa zeta function.