Download Free Zeolites As Catalysts Sorbents And Detergent Builders Book in PDF and EPUB Free Download. You can read online Zeolites As Catalysts Sorbents And Detergent Builders and write the review.

This new book will be welcomed by companies involved in catalysis and catalyst manufacturing, sorbent and detergent production, chemical and petroleum refining, and by research scientists in academia. It contains 76 original contributions of recent work on fundamental and technological aspects of zeolite research and application. Particular attention is paid to novel developments in zeolite catalysis, sorption on zeolites and use of zeolites as detergent builders. Problems of zeolite synthesis, structure, modification, ion exchange, diffusion and novel applications are also dealt with. Topics which are the subject of much current interest are also treated, e.g. new catalytic applications of zeolites in the synthesis of fine chemicals, novel formulations of detergent builders and industrially developed zeolite-based separation processes. The application of zeolites is also discussed from both economic and ecological points of view. The contributions cover a wide range of materials and results which are organised, to a large extent, in tables and figures and are identified by appropriate keywords.The meeting at which these contributions were presented was the latest in a series of smaller, more specialized zeolite meetings which are held in between the large International Zeolite Conferences. Participating in the symposium were experts from both industry and academia who gave invited lectures, oral and poster presentations. The resulting book provides a large body of helpful information for present and future work and development in zeolite research and applications.
Atoms and molecules in all states of matter are subject to continuous irregular movement. This process, referred to as diffusion, is among the most general and basic phenomena in nature and determines the performance of many technological processes. This book provides an introduction to the fascinating world of diffusion in microporous solids. Jointly written by three well-known researchers in this field, it presents a coherent treatise, rather than a compilation of separate review articles, covering the theoretical fundamentals, molecular modeling, experimental observation and technical applications. Based on the book Diffusion in Zeolites and other Microporous Solids, originally published in 1992, it illustrates the remarkable speed with which this field has developed since that time. Specific topics include: new families of nanoporous materials, micro-imaging and single-particle tracking, direct monitoring of transient profiles by interference microscopy, single-file diffusion and new approaches to molecular modeling.
Zeolites occur in nature and have been known for almost 250 years as alumino silicate minerals. Examples are clinoptilolite, mordenite, offretite, ferrierite, erionite and chabazite. Today, most of these and many other zeolites are of great interest in heterogeneous catalysis, yet their naturally occurring forms are of limited value as catalysts because nature has not optimized their properties for catalytic applications and the naturally occurring zeolites almost always contain undesired impurity phases. It was only with the advent of synthetic zeolites in the period from about 1948 to 1959 (thanks to the pioneering work of R. M. Barrer and R. M. Milton) that this class of porous materials began to playa role in catalysis. A landmark event was the introduction of synthetic faujasites (zeolite X at first, zeolite Y slightly later) as catalysts in fluid catalytic cracking (FCC) of heavy petroleum distillates in 1962, one of the most important chemical processes with a worldwide capacity of the order of 500 million t/a. Compared to the previously used amorphous silica-alumina catalysts, the zeolites were not only orders of magnitude more active, which enabled drastic process engineering improvements to be made, but they also brought about a significant increase in the yield of the target product, viz. motor gasoline. With the huge FCC capacity worldwide, the added value of this yield enhancement is of the order of 10 billion US $ per year.
These proceedings reflect recent developments in the field of zeolite chemistry and catalysis with an emphasis on the role of a modifying component on the properties of the molecular sieve material. The plenary lectures and contributed papers concentrate on the problem of isomorphous substitution in a zeolitic framework; on the occlusion and the structure of metal, metal oxide, and metal sulphide clusters and complexes in the intracrystalline void volume of molecular sieves and zeolites as well as in the interlaminar space of layered compounds.Catalytic applications are discussed, not only in regard to traditional hydrocarbon transformation, but also in such areas as: reduction of SO2, decomposition of NO, reactions of sulphur containing compounds and conversion of CO, CO2 to hydrocarbons or of alcohols to oxygenated products.Because the book provides valuable data and information on new achievements in the zeolite material science and application, it will be of considerable interest to all research groups involved in zeolite science.
Formerly, the catalytic use of zeolites was exclusive to the field of acid catalysis. Nowadays, zeolites also find applications as catalysts in a wide array of chemical reactions such as; base catalyzed reactions, Redox reactions and catalytic reactions on transition metals and their complexes in confined environments. The concepts of Brønsted or Lewis acid-base pairs are adequately illustrated in the literature and well-understood in terms of structural and electronic properties of zeolites. By contrast, properties of chemically modified silicates, aluminosilicates and aluminophosphates have not yet been fully explored. The list of oxydo-reduction reactions performed in the presence of these new materials is growing as demonstrated by the selective catalytic reduction of nitrogen oxides or the numerous oxidations employing hydrogen peroxide. Much effort is currently being made to get a better insight into the nature of the sites involved. The zeolite lattice may also be used as a host for encapsulated complexes or metallic clusters allowing the control of nuclearity of these active species and the steric constraints imposed on the reactants. Molecular sieve and shape selectivity effects have also constituted fascinating aspects of zeolite properties. Recent developments leading to increasingly large pore sizes with VPI-5, cloverite and more recently mesoporous molecular sieves have broadened the spectrum of these applications. Indeed, larger and larger reactant and product molecules can be accommodated in these lattices. These new adsorbant/adsorbate systems create additional needs for experimental data and theoretical descriptions of transport properties, in particular of mono- and multi-components diffusion coefficients in the zeolite pore lattice.All these themes, representing the forefront and current trends in zeolite research, were discussed in the submitted papers to the symposium and are widely represented in the selected papers contained in this volume. A feature common to most of these contributions is the combined use of a variety of analytical techniques. Some of these techniques are at the frontier of the latest analytical developments such as multiple scattering EXAFS and bidimensional MAS-NMR.
The idea for putting together a tutorial on zeolites came originally from my co-editor, Eric Derouane, about 5 years ago. I ?rst met Eric in the mid-1980s when he spent 2 years working for Mobil R&D at our then Corporate lab at Princeton, NJ. He was on the senior technical staff with projects in the synthesis and characterization of new materials. At that time, I managed a group at our Paulsboro lab that was responsible for catalyst characterization in support of our catalyst and process development efforts, and also had a substantial group working on new material synthesis. Hence, our interests overlapped considerably and we met regularly. After Eric moved back to Namur (initially), we maintained contact, and in the 1990s, we met a number of times in Europe on projects of joint interest. It was after I retired from ExxonMobil in 2002 that we began to discuss the tutorial concept seriously. Eric had (semi-)retired and lived on the Algarve, the southern coast of Portugal. In January 2003, my wife and I spent 3 weeks outside of Lagos, and I worked parts of most days with Eric on the proposed content of the book. We decided on a comprehensive approach that ultimately amounted to some 20+ chapters covering all of zeolite chemistry and catalysis and gave it the title Zeolite Chemistry and Catalysis: An integrated Approach and Tutorial.
This volume comprises the proceedings of the International Symposium on Zeolites and Microporous Crystals (ZMPC '93). At this meeting progress in the following areas was discussed: crystal chemistry; synthesis; ion exchange and modification; adsorption and diffusion; intercalation and cross-linking; host-guest interaction; catalysis; applications.
Zeolites are the most frequently used industrial catalysts. Their applications range from oil refining, petrochemistry and the synthesis of special chemicals to environmental catalysis. Rapid progress in basic research and the development of new processes has resulted in the first Federation of European Zeolite Associations (FEZA) School on Zeolites. Zeolites and Ordered Mesoporous Materials: Progress and Prospects reflects the programme of the first School on Zeolites, held in Prague on August 20-21, 2005. Readers gain insight into the synthesis of the ever-expanding spectrum of zeolites, zeotypes and ordered mesoporous materials including the use of zeolites and mesoporous materials as catalysts in organic conversions. These range from the fascinating ship-in-bottle systems via cascade reactions to bulk applications in oil-refining and petrochemistry. Contributions from world experts enhance the book, with select chapters on trends in the molecular sieves field, zeolite structures, ion-exchange properties of zeolites, advanced applications (with unique technologies and opportunities) and a chapter on natural zeolites.* Contains contributions from world experts in the field * Includes an account of the frontier topic of high-throughput techniques* Reviews the application of quantum-chemical methods to zeolite science to show the necessity of combining experimental and theoretical approaches