Download Free Wssa Abstracts Book in PDF and EPUB Free Download. You can read online Wssa Abstracts and write the review.

The late 1980s saw an explosion in the amount and diversity of herbicide resistance, posing a threat to crop production in many countries. The rapid escalation in herbicide resistance worldwide and in the understanding of resistance at the population, biochemical, and molecular level is the focus of this timely book. Leading researchers from North America, Australia, and Western Europe present lucid reviews that consider the population dynamics and genetics, biochemistry, and agro-ecology of resistance. Resistance to various herbicides is discussed in detail, as well as the mechanisms responsible for cross resistance and multiple resistance. This reference is invaluable to those interested in evolution and the ability of species to overcome severe environmental stress.
Under the Program of Research on the Economics of Invasive Species Management (PREISM), the U.S. Department of Agriculture¿s (USDA) Economic Research Service (ERS) conducts intramural research and funds extramural research to support the economic basis of decision-making concerning invasive species issues, policies, and programs. This report details the objectives and activities of PREISM including important accomplishments for fiscal years 2003-2011. Included are descriptions of the extramural research program and all funded projects, and a list of project outputs. Charts and tables. This is a print on demand edition of an important, hard-to-find publication.
This work provides the fundamental information necessary for the development of weed management strategies for all the major US crops using concepts that can be applied worldwide. Weed management systems are provided for cotton, peanut, soybean, wheat, barley, oat, sorghum, rice, fruits, nut crops, and more. The dynamics involved in creating the best management approaches for specific types of crops are explained.
In recent decades, repeated use of herbicides in the same field has imposed selection for resistance in species that were formerly susceptible. On the other hand, considerable research in the private and public sectors has been directed towards introducing herbicide tolerance into susceptible crop species. The evolution of herbicide resistance, understanding its mechanisms, characterisation of resistant weed biotypes, development of herbicide-tolerant crops and management of resistant weeds are described throughout the 36 chapters of this book. It has been written by leading researchers based on the contributions made at the International Symposium on Weed and Crop Resistance to Herbicides held at Córdoba, Spain. This book will be a good reference source for research scientists and advanced students.
Recent Highlights in the Discovery and Optimization of Crop Protection Products highlights the most prominent, recent results in the search for safe and effective new crop protection products. With a focus on the design, synthesis, optimization and/or structure-activity relationships of new chemistries targeting insect, disease, weed, nematode, vector and animal parasite control, the book also includes recent developments in crop enhancement chemistries and new approaches to crop protection products. The inclusion of information on testing tools, green chemistry approaches, and the latest discovery tools, like modeling, structure-based design, and testing tools makes this volume complete. Based on key presentations given at the 14th International IUPAC conference on Crop Protection, May 19-24, 2019 in Ghent, Belgium, this book includes the many exciting new discoveries and findings reported. It is designed to inspire additional research and advancement in the field. - Based on science presented at the 2019 International Union of Pure and Applied Chemistry Conference on Crop Protection - Provides real-world perspectives on pesticide and disease control progress - Presents scientific developments from an international array of contributing authors
Developments in the understanding of herbicide activity and toxicology have expanded tremendously in the past fifteen years. Research on the mechanism of action of most major classes of herbicide chemistry has provided scientists with excellent insight into enzyme targets. More recently, developments in molecular biology have provided information about herbicide action at the genetic level. Less well understood are the toxicological aspects of herbicide activity that culminate in plant injury or death. Toxicology, Biochemistry and Molecular Biology of Herbicide Activity is a review of the recent literature on most of the major classes of herbicide chemistry in commercial use. The chapters include information about different aspects of herbicide activity related to photosynthesis, inhibition of amino acid biosynthesis, disruption of cell division and microtubule assembly, activity of phytohormone (auxin) mimics, inhibition of fatty acid biosynthesis and some developments in the understanding of herbicide resistance.
Biological control offers a promising alternative to chemical control which can have adverse environmental implications. This volume contains 16 articles describing the most modern topics in biocontrol of plant pathogens, including risk analysis for the release of microbial antagonists, genetic engineering and application of tissue culture.
Weeds hold an enigmatic and sometimes-controversial place in agriculture, where they are generally reviled, grudgingly tolerated, and occasionally admired. In most cases, growers make considerable effort to reduce the negative economic impact of weeds because they compete with crops for resources and hinder field operations, thereby affecting crop productivity and quality, and ultimately the sustainability of agriculture. Weed control in production agriculture is commonly achieved through the integration of chemical, biological, and mechanical management methods. Chemicals (herbicides) usually inhibit the growth and establishment of weed plants by interfering with various physiological and biochemical pathways. Biological methods include crop competition, smother crops, rotation crops, and allelopathy, as well as specific insect predators and plant pathogens. Mechanical methods encompass an array of tools from short handled hoes to sophisticated video-guided robotic machines. Integrating these technologies, in order to relieve the negative impacts of weeds on crop production in a way that allows growers to optimize profits and preserve human health and the environment, is the science of weed management.