Download Free Workshop On Performance Of Cement Based Materials In Aggressive Aqueous Environments Book in PDF and EPUB Free Download. You can read online Workshop On Performance Of Cement Based Materials In Aggressive Aqueous Environments and write the review.

Concrete and cement-based materials must operate in increasingly aggressive aqueous environments, which may be either natural or industrial. These materials may suffer degradation in which ion addition and/or ion exchange reactions occur, leading to a breakdown of the matrix microstructure and consequent weakening. Sometimes this degradation can be extremely rapid and serious such as in acidic environments, while in other cases degradation occurs over long periods. Consequences of material failure are usually severe – adversely affecting the health and well-being of human communities and disturbing ecological balances. There are also large direct costs of maintaining and replacing deteriorated infrastructure and indirect costs from loss of production during maintenance work, which place a great burden on society. The focus of this book is on addressing issues concerning performance of cement-based materials in aggressive aqueous environments , by way of this State-of-the-Art Report. The book represents the work of many well-known and respected authors who contributed chapters or parts of chapters. Four main themes were addressed: I. Nature and kinetics of degradation and deterioration mechanisms of cement-based materials in aggressive aqueous environments, II. Modelling of deterioration in such environments, III. Test methods to assess performance of cement-based materials in such environments, and which can be used to characterise and rate relative performance and inform long term predictions, IV. Engineering implications and consequences of deterioration in aggressive aqueous environments, and engineering approaches to the problem.
This volume contains the Proceedings of the RILEM TC 252-CMB International Symposium on the Chemo-Mechanical Characterization of Bituminous Materials. The Symposium was attended by researchers and practitioners from different fields presenting the latest findings in the chemical, mechanical, and microstructural characterization of bituminous materials. The book offers new and cutting edge papers on innovative techniques for the characterization of bituminous materials, gaining new insights into current issues such as effects of aging, moisture, and temperature.
This volume highlights the latest advances, innovations, and applications in bituminous materials and structures and asphalt pavement technology, as presented by leading international researchers and engineers at the RILEM International Symposium on Bituminous Materials (ISBM), held in Lyon, France on December 14-16, 2020. The symposium represents a joint effort of three RILEM Technical Committees from Cluster F: 264-RAP “Asphalt Pavement Recycling”, 272-PIM “Phase and Interphase Behaviour of Bituminous Materials”, and 278-CHA “Crack-Healing of Asphalt Pavement Materials”. It covers a diverse range of topics concerning bituminous materials (bitumen, mastics, mixtures) and road, railway and airport pavement structures, including: recycling, phase and interphase behaviour, cracking and healing, modification and innovative materials, durability and environmental aspects, testing and modelling, multi-scale properties, surface characteristics, structure performance, modelling and design, non-destructive testing, back-analysis, and Life Cycle Assessment. The contributions, which were selected by means of a rigorous international peer-review process, present a wealth of exciting ideas that will open novel research directions and foster new multidisciplinary collaborations.
Digital fabrication has been termed the “third industrial revolution”, and is promising to revolutionize many disciplines, including most recently the construction sector. Both academia and industry see immense promise in cementitious materials, which lend themselves well to additive manufacturing techniques for digital fabrication in construction. With this recent trend and high interest in this new research field, the 1st RILEM International Conference on Concrete and Digital Fabrication (Digital Concrete 2018) was organized. Since 2014, ETH Zurich has been host for the Swiss National Centre for Competence in Research (NCCR) for Digital Fabrication in Architecture, which is highly interdisciplinary and unique worldwide. In 2018, this NCCR opened the “DFAB House”, which incorporates many digital fabrication principles for architecture. It is also responsible for the 600 m2 Robotic Fabrication Lab and the first robotically built roof in the world. Held in tandem with Rob|Arch 2018, the leading conference for robotics in architecture, RILEM deemed it the right time to combine forces at this new conference, which will be the first large conference to feature the work of the recently created RILEM Technical Committee on Digital Fabrication with Cement-based Materials, among other leaders in this new field worldwide. This conference proceedings brings together papers that take into account the findings in this new area. Papers reflect the varying themes of the conference, including Materials, Processing, Structure, and Applications.
This work presents the results of RILEM TC 237-SIB (Testing and characterization of sustainable innovative bituminous materials and systems). The papers have been selected for publication after a rigorous peer review process and will be an invaluable source to outline and clarify the main directions of present and future research and standardization for bituminous materials and pavements. The following topics are covered: - Characterization of binder-aggregate interaction - Innovative testing of bituminous binders, additives and modifiers - Durability and aging of asphalt pavements - Mixture design and compaction analysis - Environmentally sustainable materials and technologies - Advances in laboratory characterization of bituminous materials - Modeling of road materials and pavement performance prediction - Field measurement and in-situ characterization - Innovative materials for reinforcement and interlayer systems - Cracking and damage characterization of asphalt pavements - Recycling and re-use in road pavements This is the proceedings of the RILEM SIB2015 Symposium (Ancona, Italy, October 7-9, 2015).
This volume comprises the proceedings of the Third International Conference on Calcined Clays for Sustainable Concrete held in New Delhi, India in October 2019. The papers cover topics related to geology of clay, hydration and performance of blended systems with calcined clays, alkali activated binders, and economic and environmental impacts of the use of calcined clays in cement-based materials. The book presents research on influence of processing on reactivity of calcined clays, influence of clay mineralogy on reactivity, geology of clay deposits, and the environmental impact of use of calcined clays in cement and concrete and field applications of calcined clay in concrete. Apart from giving an overview of the progress of research during the last two years, this work also covers the state-of-the art on the practical aspects of production and use of calcined clays in construction. The contents of this volume will prove useful to researchers and graduate students working in the areas of cement chemistry, cement production, and concrete design.
This volume highlights the latest advances, innovations, and applications in the field of sustainable concrete structures, as presented by scientists and engineers at the RILEM International Conference on Numerical Modeling Strategies for Sustainable Concrete Structures (SSCS), held in Marseille, France, on July 4-6, 2022. It demonstrates that numerical methods (finite elements, finite volumes, finite differences) are a relevant response to the challenge to optimize the utilization of cement in concrete constructions while checking that these constructions have a lifespan compatible with the stakes of sustainable development. They are indeed accurate tools for an optimized design of concrete constructions, and allow us to consider all types of complexities: for example, those linked to rheological, physicochemical and mechanical properties of concrete, those linked to the geometry of the structures or even to the environmental boundary conditions. This optimization must also respect constraints of time, money, security, energy, CO2 emissions, and, more generally, life cycle more reliably than the codes and analytical approaches currently used. Numerical methods are, undoubtedly, the best calculation tools at the service of concrete eco-construction. The contributions present traditional and new ideas that will open novel research directions and foster multidisciplinary collaboration between different specialists.