Download Free Workshop On Higher Order Spectral Analysis Book in PDF and EPUB Free Download. You can read online Workshop On Higher Order Spectral Analysis and write the review.

Now available in a three-volume set, this updated and expanded edition of the bestselling The Digital Signal Processing Handbook continues to provide the engineering community with authoritative coverage of the fundamental and specialized aspects of information-bearing signals in digital form. Encompassing essential background material, technical details, standards, and software, the second edition reflects cutting-edge information on signal processing algorithms and protocols related to speech, audio, multimedia, and video processing technology associated with standards ranging from WiMax to MP3 audio, low-power/high-performance DSPs, color image processing, and chips on video. Drawing on the experience of leading engineers, researchers, and scholars, the three-volume set contains 29 new chapters that address multimedia and Internet technologies, tomography, radar systems, architecture, standards, and future applications in speech, acoustics, video, radar, and telecommunications. This volume, Wireless, Networking, Radar, Sensor Array Processing, and Nonlinear Signal Processing, provides complete coverage of the foundations of signal processing related to wireless, radar, space–time coding, and mobile communications, together with associated applications to networking, storage, and communications.
In the signal-processing research community, a great deal of progress in higher-order statistics (HOS) began in the mid-1980s. These last fifteen years have witnessed a large number of theoretical developments as well as real applications. Blind Estimation Using Higher-Order Statistics focuses on the blind estimation area and records some of the major developments in this field. Blind Estimation Using Higher-Order Statistics is a welcome addition to the few books on the subject of HOS and is the first major publication devoted to covering blind estimation using HOS. The book provides the reader with an introduction to HOS and goes on to illustrate its use in blind signal equalisation (which has many applications including (mobile) communications), blind system identification, and blind sources separation (a generic problem in signal processing with many applications including radar, sonar and communications). There is also a chapter devoted to robust cumulant estimation, an important problem where HOS results have been encouraging. Blind Estimation Using Higher-Order Statistics is an invaluable reference for researchers, professionals and graduate students working in signal processing and related areas.
The absence of training signals from many kinds of transmission necessitates the widespread use of blind equalization and system identification. There have been many algorithms developed for these purposes, working with one- or two-dimensional signals and with single-input single-output or multiple-input multiple-output, real or complex systems. It is now time for a unified treatment of this subject, pointing out the common characteristics of these algorithms as well as learning from their different perspectives. "Blind Equalization and System Identification" provides such a unified treatment presenting theory, performance analysis, simulation, implementation and applications. This is a textbook for graduate courses in discrete-time random processes, statistical signal processing, and blind equalization and system identification. It contains material which will also interest researchers and engineers working in digital communications, source separation, speech processing, and other, similar applications.
A selection of papers presented at the four-yearly IMA conference on Mathematics in Signal Processing. Covering a wide range of recent topics, including excellent review papers and original research.
A systematic exploration of both classic and contemporary algorithms in blind source separation with practical case studies The book presents an overview of Blind Source Separation, a relatively new signal processing method. Due to the multidisciplinary nature of the subject, the book has been written so as to appeal to an audience from very different backgrounds. Basic mathematical skills (e.g. on matrix algebra and foundations of probability theory) are essential in order to understand the algorithms, although the book is written in an introductory, accessible style. This book offers a general overview of the basics of Blind Source Separation, important solutions and algorithms, and in-depth coverage of applications in image feature extraction, remote sensing image fusion, mixed-pixel decomposition of SAR images, image object recognition fMRI medical image processing, geochemical and geophysical data mining, mineral resources prediction and geoanomalies information recognition. Firstly, the background and theory basics of blind source separation are introduced, which provides the foundation for the following work. Matrix operation, foundations of probability theory and information theory basics are included here. There follows the fundamental mathematical model and fairly new but relatively established blind source separation algorithms, such as Independent Component Analysis (ICA) and its improved algorithms (Fast ICA, Maximum Likelihood ICA, Overcomplete ICA, Kernel ICA, Flexible ICA, Non-negative ICA, Constrained ICA, Optimised ICA). The last part of the book considers the very recent algorithms in BSS e.g. Sparse Component Analysis (SCA) and Non-negative Matrix Factorization (NMF). Meanwhile, in-depth cases are presented for each algorithm in order to help the reader understand the algorithm and its application field. A systematic exploration of both classic and contemporary algorithms in blind source separation with practical case studies Presents new improved algorithms aimed at different applications, such as image feature extraction, remote sensing image fusion, mixed-pixel decomposition of SAR images, image object recognition, and MRI medical image processing With applications in geochemical and geophysical data mining, mineral resources prediction and geoanomalies information recognition Written by an expert team with accredited innovations in blind source separation and its applications in natural science Accompanying website includes a software system providing codes for most of the algorithms mentioned in the book, enhancing the learning experience Essential reading for postgraduate students and researchers engaged in the area of signal processing, data mining, image processing and recognition, information, geosciences, life sciences.
Because most real-world signals, including speech, sonar, communication, and biological signals, are non-stationary, traditional signal analysis tools such as Fourier transforms are of limited use because they do not provide easily accessible information about the localization of a given frequency component. A more suitable approach for those studying non-stationary signals is the use of time frequency representations that are functions of both time and frequency. Applications in Time-Frequency Signal Processing investigates the use of various time-frequency representations, such as the Wigner distribution and the spectrogram, in diverse application areas. Other books tend to focus on theoretical development. This book differs by highlighting particular applications of time-frequency representations and demonstrating how to use them. It also provides pseudo-code of the computational algorithms for these representations so that you can apply them to your own specific problems. Written by leaders in the field, this book offers the opportunity to learn from experts. Time-Frequency Representation (TFR) algorithms are simplified, enabling you to understand the complex theories behind TFRs and easily implement them. The numerous examples and figures, review of concepts, and extensive references allow for easy learning and application of the various time-frequency representations.
This collaborative work presents the results of over twenty years of pioneering research by Professor Simon Haykin and his colleagues, dealing with the use of adaptive radar signal processing to account for the nonstationary nature of the environment. These results have profound implications for defense-related signal processing and remote sensing. References are provided in each chapter guiding the reader to the original research on which this book is based.
In this, the third and final volume in the series, ten experts investigate a broad range of topics covering fundamental issues and applications in popular and new algorithms for Spectral Analysis and Array Processing. It covers optimal model-based processing techniques for the detection of multiple narrowband sources; two-dimensional angle estimation; direction-finding algorithms for closely-spaced source scenarios; and the use of neural networks in solving source location problems.