Download Free Wood Chemistry And Wood Biotechnology Book in PDF and EPUB Free Download. You can read online Wood Chemistry And Wood Biotechnology and write the review.

This four volume set covers the entire spectrum of pulp and paper chemistry and technology from starting material to processes and products including market demands. This work is essential for all students of wood science and a useful reference for those working in the pulp and paper industry or on the chemistry of renewable resources. Volume 1 provides a survey of the biological and chemical structure of wood as well as an introduction to the chemical reactions used during pulp production processes. The work presents the different raw materials used for pulp production, the macroscopic and morphological construction of wood and related characterization methods, the chemical structure and arrangement of the wood polymers and extractives, biosynthesis of wood polymers, carbohydrate and lignin analysis, reactions of wood polymers in mechanical and chemical pulping and bleaching processes, biotechnical processes of relevance for the pulp and paper industry, different types of microorganisms and their modes of interaction with wood, the impact of chemical and microbiological processes on the hierarchical structure of wood and pulp.
This 15-chapter book is divided into four sections that discuss wood's structure and basic chemistry, its properties and reactivity, and its surface and degradation chemistry. The very basis of how wood is formed and the structure it assumes during this growth are given in the first section. Various wood science terms are defined and discussed thoroughly to give a clear and adequate foundation for the rest of the book. Wood water relationship important in almost any wood applications- are also discussed in this section. The subsequent three sections discuss relations and chemistry important for the beginning wood chemist to understand. These topics include wood's cell wall components, strength, interaction with preservatives, and adhesion. Wood polymer materials, wood surface activation, weathering and protection, and pyrolysis and fire retardancy are topics also embraced.
This substantially revised and updated classic reference offers a valuable overview and myriad details on current chemical processes, products, and practices. No other source offers as much data on the chemistry, engineering, economics, and infrastructure of the industry. The two volume Handbook serves a spectrum of individuals, from those who are directly involved in the chemical industry to others in related industries and activities. Industrial processes and products can be much enhanced through observing the tenets and applying the methodologies found in the book’s new chapters.
Summary: The production of forestry products is based on a complex chain of knowledge in which the biological material wood with all its natural variability is converted into a variety of fiber-based products, each one with its detailed and specific quality requirements. This four volume set covers the entire spectrum of pulp and paper chemistry and technology from starting material to processes and products including market demands. Supported by a grant from the Ljungberg Foundation, the Editors at the Royal Institute of Technology, Stockholm, Sweden coordinated over 30 authors from university and industry to create this comprehensive overview. This work is essential for all students of wood science and a useful reference for those working in the pulp and paper industry or on the chemistry of renewable resources
This book will focus on lignocellulosic fibres as a raw material for several applications. It will start with wood chemistry and morphology. Then, some fibre isolation processes will be given, before moving to composites, panel and paper manufacturing, characterization and aging.
Substantially revising and updating the classic reference in the field, this handbook offers a valuable overview and myriad details on current chemical processes, products, and practices. No other source offers as much data on the chemistry, engineering, economics, and infrastructure of the industry. The Handbook serves a spectrum of individuals, from those who are directly involved in the chemical industry to others in related industries and activities. It provides not only the underlying science and technology for important industry sectors, but also broad coverage of critical supporting topics. Industrial processes and products can be much enhanced through observing the tenets and applying the methodologies found in chapters on Green Engineering and Chemistry (specifically, biomass conversion), Practical Catalysis, and Environmental Measurements; as well as expanded treatment of Safety, chemistry plant security, and Emergency Preparedness. Understanding these factors allows them to be part of the total process and helps achieve optimum results in, for example, process development, review, and modification. Important topics in the energy field, namely nuclear, coal, natural gas, and petroleum, are covered in individual chapters. Other new chapters include energy conversion, energy storage, emerging nanoscience and technology. Updated sections include more material on biomass conversion, as well as three chapters covering biotechnology topics, namely, Industrial Biotechnology, Industrial Enzymes, and Industrial Production of Therapeutic Proteins.
The oil crisis during the 1970s turned interest towards the utilization of renewable resources and towards lignocellulosics in particular. The 1970s were also the cradle period of biotechnology, and the years when biotechnical utilization of lignocellulosic waste from agriculture and forestry gained priori ty. This was a logical conclusion since one of nature's most important biologi cal reactions is the conversion of wood and other lignocellulosic materials to carbon dioxide, water and humic substances. However, while biotechnology in other areas like medicine and pharmacology concerned production of expen sive products on a small scale, biotechnical utilization and conversion of ligno cellulosics meant production of inexpensive products on a large scale. Biotechnical utilization of lignocellulosic materials is therefore a very difficult task, and the commercial utilization of this technology has not progressed as rapidly as one would have desired. One reason for this was the lack of basic knowledge of enzyme mechanisms involved in the degradation and conversion of wood, other lignocellulosics and their individual components. There are also risks associated with initiating a technical development before a stable platform of knowledge is available. Several of the projects started with en thusiasm have therefore suffered some loss of interest. Also contributing to this failing interest is the fact that the oil crisis at the time was not a real one. At present, nobody predicts a rapid exhaustion of the oil resources and fuel production from lignocellulosics is no longer a high priority.
This book is exclusively concerned with wood modification, although many of these processes are generic and can be applied to other lignocellulosic materials. There have been many rapid developments in wood modification over the past decade and, in particular, there has been considerable progress made in the commercialisation of technologies. Topics covered include: The use of timber in the 21st century Modifying the properties of wood Chemical modification of wood: Acetic Anhydride Modification and reaction with other chemicals Thermal modification of wood Surface modification Impregnation modification Commercialisation of wood modification Environmental consideration and future developments This is the first time that a book has covered all wood modification technologies in one text. Although the book covers the main research developments in wood modification, it also puts wood modification into context and additionally deals with aspects of commercialisation and environmental impact. This book is very timely, because wood modification is undergoing huge developments at the present time, driven in part by environmental concerns regarding the use of wood treated with certain preservatives. There has been considerable commercial interest shown in wood modification over the past decade, with products based upon thermal modification, and furfurylation now being actively being marketed. The next few years will see the commercialisation of acetylation and impregnation modification. This is a new industry, but one that has enormous potential. This book will prove useful to all those with an interest in wood modification including researchers, technologists and professionals working in wood science and timber engineering, wood preservation, and well as professionals in the paper and pulp industries, and those with an interest in the development of renewable materials.