Download Free Wood And Fiber Book in PDF and EPUB Free Download. You can read online Wood And Fiber and write the review.

This book will focus on lignocellulosic fibres as a raw material for several applications. It will start with wood chemistry and morphology. Then, some fibre isolation processes will be given, before moving to composites, panel and paper manufacturing, characterization and aging.
Over the past two decades, there has been a shift in research and industrial practice, and products traditionally manufactured primarily from wood are increasingly combined with other nonwood materials of either natural or synthetic origin. Wood and other plant-based fiber is routinely combined with adhesives, polymers, and other "ingredients" to produce composite materials. Introduction to Wood and Natural Fiber Composites draws together widely scattered information concerning fundamental concepts and technical applications, essential to the manufacture of wood and natural fiber composites. The topics addressed include basic information on the chemical and physical composition of wood and other lignocellulosic materials, the behavior of these materials under thermocompression processes, fundamentals of adhesion, specific adhesive systems used to manufacture composite materials, and an overview of the industrial technologies used to manufacture major product categories. The book concludes with a chapter on the burgeoning field of natural fiber-plastic composites. Introduction to Wood and Natural Fiber Composites is a valuable resource for upper-level undergraduate students and graduate students studying forest products and wood science, as well as for practicing professionals working in operational areas of wood- and natural-fiber processing. For more information on the Wiley Series in Renewable Resources, visit www.wiley.com/go/rrs Topics covered include: Overview of lignocellulosic material, their chemical and physical composition Consolidation behavior of wood and fiber in response to heat and pressure Fundamentals of adhesion Adhesives used to bond wood and lignocellulosic composites Manufacturing technology of major product types Fiber/plastic composites
This richly-illustrated book presents the information necessary for fiber analysis in the field of pulp and paper. A discussion of raw-material structure and the features used for species identification in pulp is followed up by the description of 117 fiber species. Of these, 83 are wood fibers and 34 are of nonwood origin. The tree species range across all five continents, 29 from Eurasia, 38 from North America and 16 from the southern hemisphere and the tropics. Informative micrographs, identification tables, and distribution maps aid species differentiation, making this atlas ideal for everyone interested in fiber identification.
The use of natural fibres as reinforcements in composites has grown in importance in recent years. Natural Fibre Composites summarises the wealth of significant recent research in this area. Chapters in part one introduce and explore the structure, properties, processing, and applications of natural fibre reinforcements, including those made from wood and cellulosic fibres. Part two describes and illustrates the processing of natural fibre composites. Chapters discuss ethical practices in the processing of green composites, manufacturing methods and compression and injection molding techniques for natural fibre composites, and thermoset matrix natural fibre-reinforced composites. Part three highlights and interprets the testing and properties of natural fibre composites including, non-destructive and high strain rate testing. The performance of natural fibre composites is examined under dynamic loading, the response of natural fibre composites to impact damage is appraised, and the response of natural fibre composites in a marine environment is assessed. Natural Fibre Composites is a technical guide for professionals requiring an understanding of natural fibre composite materials. It offers reviews, applications and evaluations of the subject for researchers and engineers. - Introduces and explores the structure, properties, processing, and applications of natural fibre reinforcements, including those made from wood and cellulosic fibres - Highlights and interprets the testing and properties of natural fibre composites, including non-destructive and high strain rate testing - Examines performance of natural fibre composites under dynamic loading, the response of natural fibre composites to impact damage, and the response of natural fibre composites in a marine environment
Advanced High Strength Natural Fibre Composites in Construction provides the basic framework and knowledge required for the efficient and sustainable use of natural fiber composites as a structural and building material, along with information on the ongoing efforts to improve the efficiency of use and competitiveness of these composites. Areas of particular interest include understanding the nature and behavior of raw materials and their functional contributions to the advanced architectures of high strength composites (Part 1), discussing both traditional and novel manufacturing technologies for various advanced natural fiber construction materials (Part 2), examining the parameters and performance of the composites (Part 3), and finally commenting on the associated codes, standards, and sustainable development of advanced high strength natural fiber composites for construction. This exposition will be based on well understood environmental science as it applies to construction (Part 4). The book is aimed at academics, research scholars, and engineers, and will serve as a most valuable text or reference book that challenges undergraduate and postgraduate students to think beyond standard practices when designing and creating novel construction materials. - Presents the first comprehensive review on the efficient and sustainable use of natural fiber composites in construction and building materials - Contains detailed information on the structure, chemical composition, and physical and mechanical properties of natural fibers - Covers both traditional and novel manufacturing technologies for high strength natural fiber composites - Includes material parameters and performance in use, as well as associated codes, standards, and applied case studies - Presents contributions from leading international experts in the field
Addressed to the general professional chemist at a level between the undergraduate and the specialist in the field, presents such aspects of modern wood chemistry as anatomy, analysis, the composite nature and chemical composition of wood, and the structure and properties of cellulose, lignin, hemic
Environmental concerns are driving demand for bio-degradable materials such as plant-based natural fiber reinforced polymer composites. These composites are fast replacing conventional materials in many applications, especially in automobiles, where tribology (friction, lubrication and wear) is important. This book covers the availability and processing of natural fiber polymer composites and their structural, thermal, mechanical and, in particular, tribological properties. Chapter 1 discusses sources of natural fibers, their extraction and surface modification. It also reviews the thermal, structural, mechanical, spectroscopic and morphological properties of unmodified and chemically modified natural fibers such as sisal, jute, wood, bamboo and cotton together with their potential applications. Chapter 2 gives a brief introduction to the tribology of polymer composites and the role of fiber reinforcement and fillers in modifying their tribological properties. Further chapters discuss the chemical composition, physical structure, mechanical properties and tribological behaviour of polymer composites reinforced with sisal, jute, cotton and bamboo fibers. The tribological behaviour of wood polymer composites (WPCs) is also discussed. Tribology of natural fibre polymer composites is a useful reference guide for engineers, scientific and technical personnel involved in the development of natural fiber composites. In particular it will give an insight into mechanical properties and failure mechanisms in situations where wear, lubrication and friction are a problem. Examines the availability and processing of natural fiber composites and their structural, thermal, mechanical and tribological properties Explores sources of natural fibers, their extraction and surface modification as well as properties of chemically modified natural fibers Provides an overview of the tribology of polymer composites and the role of fiber reinforcement and filters in modifying tribological composites
Wood-polymer composites (WPC) are materials in which wood is impregnated with monomers that are then polymerised in the wood to tailor the material for special applications. The resulting properties of these materials, from lightness and enhanced mechanical properties to greater sustainability, has meant a growing number of applications in such areas as building, construction and automotive engineering. This important book reviews the manufacture of wood-polymer composites, how their properties can be assessed and improved and their range of uses.After an introductory chapter, the book reviews key aspects of manufacture, including raw materials, manufacturing technologies and interactions between wood and synthetic polymers. Building on this foundation, the following group of chapters discusses mechanical and other properties such as durability, creep behaviour and processing performance. The book concludes by looking at orientated wood-polymer composites, wood-polymer composite foams, at ways of assessing performance and at the range of current and future applications.With its distinguished editors and international team of contributors, Wood-polymer composites is a valuable reference for all those using and studying these important materials. - Provides a comprehensive survey of major new developments in wood-polymer composites - Reviews the key aspects of manufacture, including raw materials and manufacturing technologies - Discusses properties such as durability, creep behaviour and processing performance
Wood-based materials are CO2-neutral, renewable, and considered to be environmentally friendly. The huge variety of wood species and wood-based composites allows a wide scope of creative and esthetic alternatives to materials with higher environmental impacts during production, use and disposal. Quality of wood is influenced by the genetic and environmental factors. One of the emerging uses of wood are building and construction applications. Modern building and construction practices would not be possible without use of wood or wood-based composites. The use of composites enables using wood of lower quality for the production of materials with engineered properties for specific target applications. Even more, the utilization of such reinforcing particles as carbon nanotubes and nanocellulose enables development of a new generation of composites with even better properties. The positive aspect of decomposability of waste wood can turn into the opposite when wood or wood-based materials are exposed to weathering, moisture oscillations, different discolorations, and degrading organisms. Protective measures are therefore unavoidable for many outdoor applications. Resistance of wood against different aging factors is always a combined effect of toxic or inhibiting ingredients on the one hand, and of structural, anatomical, or chemical ways of excluding moisture on the other.