Download Free Wireless Power Data Transfer Energy Harvesting System Design Book in PDF and EPUB Free Download. You can read online Wireless Power Data Transfer Energy Harvesting System Design and write the review.

This book focuses on emerging wireless power/data and energy harvesting technologies, and highlights their fundamental requirements, followed by recent advancements. It provides a various technical overview and analysis of key techniques for wireless power/data and energy harvesting system design. The state-of-the-art system introduced in this book will benefit designers looking to develop wireless power transfer and energy harvesting technologies in a variety of fields, such as wearable, implantable devices, home appliances, and electric vehicles.
This book discusses, for the first time, wireless power transfer in the ocean environment. Topics covered include power electronic techniques, advanced control strategies, as well as classic and emerging applications such as smart ocean energy systems and wireless power transfer and charging of underwater autonomous vehicles. Emerging research topics are presented, along with methodologies, approaches, and industrial development of intelligent and energy-efficient techniques. Apart from the basic principles with an emphasis on inductive power transfer and mathematical analysis, the book discusses the emerging implementation for underwater wireless power transfer such as energy encryption, power and data transfer through common links, and secured data- and cyber-security. Specifically, the book comprehensively introduces significant discussions on UWPT coil theoretical and experimental analysis in seawater, optimal design, and intelligent controls. For example, since fast communication is not viable in an underwater environment, the proposed book discusses Maximum Power Efficiency Tracking (MPET) control, which achieves a maximum power efficiency (>85%) without communication or feedback from the transmitting side of the UWPT system. A k-nearest-neighbors-based machine learning approach is used to estimate the coupling coefficiency between the coils. This machine learning-based intelligent control method can offer important guidance for graduate students, academic researchers, and industrial engineers who want to understand the working principles and realize the developing trends in underwater wireless power transfer. Finally, the book includes details on the modeling and design of a smart ocean energy system--a new type of power harvesting system designed to convert ocean energy into electricity, which has the capability of making underwater wireless power connections with distributed marine devices.
A comprehensive introduction to architecture design, protocol optimization, and application development.
This book focuses on elementary concepts of both radio frequency energy harvesting (RFEH) and wireless power transfer (WPT), and highlights their fundamental requirements followed by recent advancements. It provides a systematic overview of the key components required for RFEH and WPT applications and also comprehensively introduces the pioneering research advancements achieved to date. The state-of-the-art circuit design topologies for the two different applications are presented mainly in terms of antenna operating frequencies, polarization characteristics, efficient matching network circuits, rectifier topologies, and overall rectenna systems. The book serves as a single point of reference for practicing engineers and researchers searching for potential sources and elements involved in the RFEH system as well as in the WPT system, and need rapid training and design guidelines in the following areas: • Different sensing elements used in RFEH and WPT • Inclusions of mathematical expressions and design problems • Illustration of some design examples and performance enhancement techniques
This book covers the theory, modeling, and implementation of different RF energy harvesting systems. RF energy harvesting is the best choice among the existing renewable energy sources, in terms of availability, cost, size, and integration with other systems. The device used for harvesting RF energy is called rectenna. A rectenna can work at the microwave, millimeter-wave, and terahertz waves. It also has the capability to operate at optical frequencies to be used for 6G and beyond communication systems. This book covers all aspects of wireless power transfer (WPT)/wireless energy harvesting (WEH), basics, theoretical concepts, and advanced developments occurring in the field of energy harvesting. It also covers the design theory for different types of antenna, rectifier, and impedance matching circuits used in RF energy harvesting systems. Different future and present applications, such as charging of vehicles, smart medical health care, self-driven e-vehicles, self-sustainable home automation system, and wireless drones, have also been discussed in detail.
Wireless sensors and sensor networks (WSNs) are nowadays becoming increasingly important due to their decisive advantages. Different trends towards the Internet of Things (IoT), Industry 4.0 and 5G Networks address massive sensing and admit to have wireless sensors delivering measurement data directly to the Web in a reliable and easy manner. These sensors can only be supported, if sufficient energy efficiency and flexible solutions are developed for energy-aware wireless sensor nodes. In the last years, different possibilities for energy harvesting have been investigated showing a high level of maturity. This book gives therefore an overview on fundamentals and techniques for energy harvesting and energy transfer from different points of view. Different techniques and methods for energy transfer, management and energy saving on network level are reported together with selected interesting applications. The book is interesting for researchers, developers and students in the field of sensors, wireless sensors, WSNs, IoT and manifold application fields using related technologies. The book is organized in four major parts. The first part of the book introduces essential fundamentals and methods, while the second part focusses on vibration converters and hybridization. The third part is dedicated to wireless energy transfer, including both RF and inductive energy transfer. Finally, the fourth part of the book treats energy saving and management strategies. The main contents are: Essential fundamentals and methods of wireless sensors Energy harvesting from vibration Hybrid vibration energy converters Electromagnetic transducers Piezoelectric transducers Magneto-electric transducers Non-linear broadband converters Energy transfer via magnetic fields RF energy transfer Energy saving techniques Energy management strategies Energy management on network level Applications in agriculture Applications in structural health monitoring Application in power grids Prof. Dr. Olfa Kanoun is professor for measurement and sensor technology at Chemnitz university of technology. She is specialist in the field of sensors and sensor systems design.
This book provides a comprehensive overview of manufacturing systems, their role in product/process design, and their interconnection with an Industry 4.0 perspective, especially related to design, manufacturing, and operations. Handbook of Manufacturing Systems and Design: An Industry 4.0 Perspective provides the knowledge related to the theories and concepts of Industry 4.0. It focuses on the different types of manufacturing systems in Industry 4.0 along with associated design, and control strategies. It concentrates on the operations in Industry 4.0 with a particular focus on supply chain, logistics, risk management, and reverse engineering perspectives. Offering basic concepts and applications through to advanced topics, the handbook feeds into the goal of being a source of knowledge as well as a vehicle to explore the future possibilities of design, techniques, methods, and operations associated with Industry 4.0. Concepts with practical applications in the form of case studies are added to each chapter to round out the many attributes this handbook offers. This handbook targets students, engineers, managers, designers, and manufacturers, and will assist in their understanding of the core concepts of manufacturing systems in connection with Industry 4.0 and optimize alignment between supply and demand in real time for effective implementation of the design concepts.
em style="mso-bidi-font-style: normal;"Wireless Information and Power Transfer offers an authoritative and comprehensive guide to the theory, models, techniques, implementation and application of wireless information and power transfer (WIPT) in energy-constrained wireless communication networks. With contributions from an international panel of experts, this important resource covers the various aspects of WIPT systems such as, system modeling, physical layer techniques, resource allocation and performance analysis. The contributors also explore targeted research problems typically encountered when designing WIPT systems.
This book focusses on the Internet of Things (IoT) and Data Mining for Modern Engineering and Healthcare Applications and the recent technological advancements in Microwave Engineering, Communication and applicability of newly developed Solid State Technologies in Bio-medical Engineering and Health-Care. The Reader will be able to know the recent advancements in Microwave Engineering including novel techniques in Microwave Antenna Design and various aspects of Microwave Propagation. This book aims to showcase, the various aspects of Communication, Networking, Data Mining, Computational Biology, Bioinformatics, Bio-Statistics and Machine Learning. In this book, recent trends in Solid State Technologies, VLSI and applicability of modern Electronic Devices in Bio-informatics and Health-Care is focused. Furthermore, this book showcases the modern optimization techniques in Power System Engineering, Machine Design and Power Systems. This Book highlights the Internet of Things (IoT) and Data Mining for Modern Engineering and Healthcare Applications and the recent technological advancements in Microwave Engineering, Communication and applicability of newly developed Solid State Technologies in Bio-medical Engineering and Health-Care for day-to-day applications. Societal benefits of Microwave Technologies for smooth and hustle-free life are also areas of major focus. Microwave Engineering includes recent advancements and novel techniques in Microwave Antenna Design and various aspects of Microwave Propagation. Day-to-Day applicability of modern communication and networking technologies are a matter of prime concern. This book aims to showcase, the various aspects of Communication, Networking, Data Mining, Computational Biology, Bioinformatics, Bio-Statistics and Machine Learning. Role of Solid Sate Engineering in development of modern electronic gadgets are discussed. In this book, recent trends in Solid State Technologies, VLSI and applicability of modern Electronic Devices in Bio-informatics and Biosensing Devices for Smart Health care are also discussed. Features: This book features Internet of Things (IoT) and Data Mining for Modern Engineering and Healthcare Applications and the recent technological advancements in Microwave Engineering, Communication and applicability of newly developed Solid State Technologies in Bio-medical Engineering and Smart Health-Care Technologies Showcases the novel techniques in Internet of Things (IoT) integrated Microwave Antenna Design and various aspects of Microwave Communication Highlights the role of Internet of Things (IoT) various aspects of Communication, Networking, Data Mining, Computational Biology, Bioinformatics, Bio-Statistics and Machine Learning Reviews the role of Internet of Things (IoT) in Solid State Technologies, VLSI and applicability of modern Electronic Devices in Bio-informatics and Health-Care In this book, role of Internet of Things (IoT) in Power System Engineering, Optics, RF and Microwave Energy Harvesting and Smart Biosensing Technologies are also highlighted