Download Free Wireless Cmos Frequency Synthesizer Design Book in PDF and EPUB Free Download. You can read online Wireless Cmos Frequency Synthesizer Design and write the review.

The recent boom in the mobile telecommunication market has trapped the interest of almost all electronic and communication companies worldwide. New applications arise every day, more and more countries are covered by digital cellular systems and the competition between the several providers has caused prices to drop rapidly. The creation of this essentially new market would not have been possible without the ap pearance of smalI, low-power, high-performant and certainly low-cost mobile termi nals. The evolution in microelectronics has played a dominant role in this by creating digital signal processing (DSP) chips with more and more computing power and com bining the discrete components of the RF front-end on a few ICs. This work is situated in this last area, i. e. the study of the full integration of the RF transceiver on a single die. Furthermore, in order to be compatible with the digital processing technology, a standard CMOS process without tuning, trimming or post-processing steps must be used. This should flatten the road towards the ultimate goal: the single chip mobile phone. The local oscillator (LO) frequency synthesizer poses some major problems for integration and is the subject of this work. The first, and also the largest, part of this text discusses the design of the Voltage Controlled Oscillator (VCO). The general phase noise theory of LC-oscillators is pre sented, and the concept of effective resistance and capacitance is introduced to char acterize and compare the performance of different LC-tanks.
Thanks to the advance of semiconductor and communication technology, the wireless communication market has been booming in the last two decades. It evolved from simple pagers to emerging third-generation (3G) cellular phones. In the meanwhile, broadband communication market has also gained a rapid growth. As the market always demands hi- performance and low-cost products, circuit designers are seeking hi- integration communication devices in cheap CMOS technology. The phase-locked loop frequency synthesizer is a critical component in communication devices. It works as a local oscillator for frequency translation and channel selection in wireless transceivers and broadband cable tuners. It also plays an important role as the clock synthesizer for data converters in the analog-and-digital signal interface. This book covers the design and analysis of PLL synthesizers. It includes both fundamentals and a review of the state-of-the-art techniques. The transient analysis of the third-order charge-pump PLL reveals its locking behavior accurately. The behavioral-level simulation of PLL further clarifies its stability limit. Design examples are given to clearly illustrate the design procedure of PLL synthesizers. A complete derivation of reference spurs in the charge-pump PLL is also presented in this book. The in-depth investigation of the digital CA modulator for fractional-N synthesizers provides insightful design guidelines for this important block.
A new and innovative paradigm for RF frequency synthesis and wireless transmitter design Learn the techniques for designing and implementing an all-digital RF frequency synthesizer. In contrast to traditional RF techniques, this innovative book sets forth digitally intensive design techniques that lead the way to the development of low-cost, low-power, and highly integrated circuits for RF functions in deep submicron CMOS processes. Furthermore, the authors demonstrate how the architecture enables readers to integrate an RF front-end with the digital back-end onto a single silicon die using standard ASIC design flow. Taking a bottom-up approach that progressively builds skills and knowledge, the book begins with an introduction to basic concepts of frequency synthesis and then guides the reader through an all-digital RF frequency synthesizer design: Chapter 2 presents a digitally controlled oscillator (DCO), which is the foundation of a novel architecture, and introduces a time-domain model used for analysis and VHDL simulation Chapter 3 adds a hierarchical layer of arithmetic abstraction to the DCO that makes it easier to operate algorithmically Chapter 4 builds a phase correction mechanism around the DCO such that the system's frequency drift or wander performance matches that of the stable external frequency reference Chapter 5 presents an application of the all-digital RF synthesizer Chapter 6 describes the behavioral modeling and simulation methodology used in design The final chapter presents the implementation of a full transmitter and experimental results. The novel ideas presented here have been implemented and proven in two high-volume, commercial single-chip radios developed at Texas Instruments: Bluetooth and GSM. While the focus of the book is on RF frequency synthesizer design, the techniques can be applied to the design of other digitally assisted analog circuits as well. This book is a must-read for students and engineers who want to learn a new paradigm for RF frequency synthesis and wireless transmitter design using digitally intensive design techniques.
The increasingly demanding performance requirements of communications systems, as well as problems posed by the continued scaling of silicon technology, present numerous challenges for the design of frequency synthesizers in modern transceivers. This book contains everything you need to know for the efficient design of frequency synthesizers for today's communications applications. If you need to optimize performance and minimize design time, you will find this book invaluable. Using an intuitive yet rigorous approach, the authors describe simple analytical methods for the design of phase locked loop (PLL) frequency synthesizers using scaled silicon CMOS and bipolar technologies. The entire design process, from system-level specification to layout, is covered comprehensively. Practical design examples are included, and implementation issues are addressed. A key problem-solving resource for practitioners in IC design, the book will also be of interest to researchers and graduate students in electrical engineering.
CMOS Fractional-N Synthesizers starts with a comprehensive introduction to general frequency synthesis. Different architectures and synthesizer building blocks are discussed with their relative importance on synthesizer specifications. The process of synthesizer specification derivation is illustrated with the DCS-1800 standard as a general test case. The book tackles the design of fractional-N synthesizers in CMOS on circuit level as well as system level. The circuit level focuses on high-speed prescaler design up to 12 GHz in CMOS and on fully integrated, low-phase-noise LC-VCO design. High-Q inductor integration and simulation in CMOS is elaborated and flicker noise minimization techniques are presented, ranging from bias point choice to noise filtering techniques. On a higher level, a systematic design strategy has been developed that trades off all noise contributions and fast dynamics for integrated capacitance (area). Moreover, a theoretical DeltaSigma phase noise analysis is presented, extended with a fast non-linear analysis method to accurately predict the influence of PLL non-linearities on the spectral purity of the DeltaSigma fractional-N frequency synthesizers.
Demand for wireless local area network systems has led to new frequency bands and new standards to accommodate higher data rates. Moreover, opportunities are increasing for the development of low- cost integrated WLAN systems. This guide for RF and high-speed analog circuit designers and students as well as wireless engineers studies the phase-locked loop as a basic building block of frequency synthesizers and WLAN receivers. It provides guidelines and engineering solutions for the design of loop filters in high- frequency PLLs. Rategh (Tavanza Inc.) and Lee (Stanford U.) discuss the different analog and digital frequency division techniques and introduce injection-locked frequency dividers as an alternative to conventional frequency dividers. c. Book News Inc.
A frequency synthesizer is one of the most critical building blocks in any wireless transceiver system. Its design is getting more and more challenging as the demand for low-voltage low-power high-frequency wireless systems continuously grows. As the supply voltage is decreased, many existing design techniques are no longer applicable. This book provides the reader with architectures and design techniques to enable CMOS frequency synthesizers to operate at low supply voltage at high frequency with good phase noise and low power consumption. In addition to updating the reader on many of these techniques in depth, this book will also introduce useful guidelines and step-by-step procedure on behaviour simulations of frequency synthesizers. Finally, three successfully demonstrated CMOS synthesizer prototypes with detailed design consideration and description will be elaborated to illustrate potential applications of the architectures and design techniques described. For engineers, managers and researchers working in radio-frequency integrated-circuit design for wireless applications.
This book describes the design and implementation of an electronic subsystem called the frequency synthesizer, which is a very important building block for any wireless transceiver. The discussion includes several new techniques for the design of such a subsystem which include the usage modes of the wireless device, including its support for several leading-edge wireless standards. This new perspective for designing such a demanding subsystem is based on the fact that optimizing the performance of a complete system is not always achieved by optimizing the performance of its building blocks separately. This book provides “hands-on” examples of this sort of co-design of optimized subsystems, which can make the vision of an always-best-connected scenario a reality.
After a review of PLL essentials, this uniquely comprehensive workbench guide takes you step-by-step through operation principles, design procedures, phase noise analysis, layout considerations, and CMOS realizations for each PLL building block. You get full details on LC tank oscillators including modeling and optimization techniques, followed by design options for CMOS frequency dividers covering flip-flop implementation, the divider by 2 component, and other key factors. The book includes design alternatives for phase detectors that feature methods to minimize jitter caused by the dead zone effect. You also find a sample design of a fully integrated PLL for WLAN applications that demonstrates every step and detail right down to the circuit schematics and layout diagrams. Supported by over 150 diagrams and photos, this one-stop toolkit helps you produce superior PLL designs faster, and deliver more effective solutions for low-cost integrated circuits in all RF applications.
Communication devices such as smart phones, GPS systems, and Bluetooth, are now part of our daily lives more than ever before. As our communication equipment becomes more sophisticated, so do the radios and other hardware required to enable that technology. Common radio architectures are required to make this technology work seamlessly. This resource describes practical aspects of radio frequency communications systems design, bridging the gap between system-level design considerations and circuit-level design specifications. Industry experts not only provide detailed calculations and theory to determine block level specifications, but also discuss basic theory and operational concepts. This resource also includes extensive, up-to-date application examples.