Download Free Wildland Fire Forest Dynamics And Their Interactions Book in PDF and EPUB Free Download. You can read online Wildland Fire Forest Dynamics And Their Interactions and write the review.

This book is a printed edition of the Special Issue "Wildland Fire, Forest Dynamics, and Their Interactions" that was published in Forests
Years of drought and decades of aggressive fire exclusion have left North American forests at high risk for future catastrophic fires. Forest settings are a magnet for recreational opportunities and for rapidly growing residential developmentputting an increasing number of citizens and their property into the path of wildfires. Recordsetting wildfires initiated the twentyfirst century and motivated the rise to prominence of wildfire on the political agenda, prompting important and farreaching new public policy initiatives. To be effective, these policies must be informed by sciencebut that requires more than just improved knowledge about the physical and biological dynamics of fire and forest ecosystems. Social values, socioeconomic factors, demographic trends, institutional arrangements, and human behavior must also be taken into consideration by the agencies and individuals responsible for wildland fire decision making. The first book to integrate the social science literature on the human dimensions of wildfire, People, Fire, and Forests reviews current studies from this broad, interdisciplinary field and synthesizes them into a rich body of knowledge with practical management implications. Chapters in the book highlight principal findings and common threads in the existing research and identify strengths and gaps. They cover such topics as public perception of wildfire risk, acceptability of fire management policies, and community impacts of wildfire. Designed to make relevant social science information more available and useful to wildfire risk managers and policy makers, People, Fire, and Forests is also intended to encourage and guide further research into wildfire. By exploringthe theoretical and methodological issues surrounding human interactions with wildfire and describing the practical implications of this research, this volume provides an essential resource for students, scholars, and professionals.
This reference work encompasses the current, accepted state of the art in the science of wildfires and wildfires that spread to communities, known as wildland-urban interface (WUI) fires. 171 author contributions include accepted knowledge on these topics from throughout the world, all written by the leading researchers, experts, practitioners, and academics. This encyclopedia is an invaluable reference for newcomers to the field, as well as researchers, students, developers, and professionals who are interested in exploring this dynamic area. General Sections include: Combustion Coordination System Locations Fire Whirls Firebrands and Embers Incident Management Team (IMT) Support Locations Incident Response Support Locations On-the-Incident Locations Soot and Effects on Wildland/WUI Fire Behavior Weathering Effects on Fire Retardant Wood Treatments Wildland Firefighting Locations Wildland Fuel Treatments
This book provides a unique exploration of the inter-relationships between the science of plant environmental responses and the understanding and management of forest fires. It bridges the gap between plant ecologists, interested in the functional and evolutionary consequences of fire in ecosystems, with foresters and fire managers, interested in effectively reducing fire hazard and damage. This innovation in this study lies in its focus on the physiological responses of plants that are of relevance for predicting forest fire risk, behaviour and management. It covers the evolutionary trade-offs in the resistance of plants to fire and drought, and its implications for predicting fuel moisture and fire risk; the importance of floristics and plant traits, in interaction with landform and atmospheric conditions, to successfully predict fire behaviour, and provides recommendations for pre- and post- fire management, in relation with the functional composition of the community. The book will be particularly focused on examples from Mediterranean environments, but the underlying principles will be of broader utility.
Wildland fires have an irreplaceable role in sustaining many of our forests, shrublands and grasslands. They can be used as controlled burns or occur as free-burning wildfires, and can sometimes be dangerous and destructive to fauna, human communities and natural resources. Through scientific understanding of their behaviour, we can develop the tools to reliably use and manage fires across landscapes in ways that are compatible with the constraints of modern society while benefiting the ecosystems. The science of wildland fire is incomplete, however. Even the simplest fire behaviours – how fast they spread, how long they burn and how large they get – arise from a dynamical system of physical processes interacting in unexplored ways with heterogeneous biological, ecological and meteorological factors across many scales of time and space. The physics of heat transfer, combustion and ignition, for example, operate in all fires at millimetre and millisecond scales but wildfires can become conflagrations that burn for months and exceed millions of hectares. Wildland Fire Behaviour: Dynamics, Principles and Processes examines what is known and unknown about wildfire behaviours. The authors introduce fire as a dynamical system along with traditional steady-state concepts. They then break down the system into its primary physical components, describe how they depend upon environmental factors, and explore system dynamics by constructing and exercising a nonlinear model. The limits of modelling and knowledge are discussed throughout but emphasised by review of large fire behaviours. Advancing knowledge of fire behaviours will require a multidisciplinary approach and rely on quality measurements from experimental research, as covered in the final chapters.
Wildland fires are occurring more frequently and affecting more of Earth's surface than ever before. These fires affect the properties of soils and the processes by which they form, but the nature of these impacts has not been well understood. Given that healthy soil is necessary to sustain biodiversity, ecosystems and agriculture, the impact of fire on soil is a vital field of research. Fire Effects on Soil Properties brings together current research on the effects of fire on the physical, biological and chemical properties of soil. Written by over 60 international experts in the field, it includes examples from fire-prone areas across the world, dealing with ash, meso and macrofauna, smouldering fires, recurrent fires and management of fire-affected soils. It also describes current best practice methodologies for research and monitoring of fire effects and new methodologies for future research. This is the first time information on this topic has been presented in a single volume and the book will be an important reference for students, practitioners, managers and academics interested in the effects of fire on ecosystems, including soil scientists, geologists, forestry researchers and environmentalists.
The Ecological Importance of High-Severity Fires, presents information on the current paradigm shift in the way people think about wildfire and ecosystems. While much of the current forest management in fire-adapted ecosystems, especially forests, is focused on fire prevention and suppression, little has been reported on the ecological role of fire, and nothing has been presented on the importance of high-severity fire with regards to the maintenance of native biodiversity and fire-dependent ecosystems and species. This text fills that void, providing a comprehensive reference for documenting and synthesizing fire's ecological role. - Offers the first reference written on mixed- and high-severity fires and their relevance for biodiversity - Contains a broad synthesis of the ecology of mixed- and high-severity fires covering such topics as vegetation, birds, mammals, insects, aquatics, and management actions - Explores the conservation vs. public controversy issues around megafires in a rapidly warming world
An overview of recent advances in the quantitative modeling of wildland fire based on fluid dynamics, including a discussion of the mathematical and dynamical principles. Providing a state-of-the-art survey, it is a useful reference for scientists, researchers, and graduate students interested in fire behavior from a range of fields.
The objective of this study was to provide managers with national-level data on current conditions of vegetation and fuels developed from ecologically based methods to address these questions: How do current vegetation and fuels differ from those that existed historically? Where on the landscape do vegetation and fuels differ from historical levels? In particular, where are high fuel accumulations? When considered at a coarse scale, which areas estimated to have high fuel accumulations represent the highest priorities for treatment?