Download Free Wide Gap Luminescent Materials Book in PDF and EPUB Free Download. You can read online Wide Gap Luminescent Materials and write the review.

Electro-optic devices based on doped wide-band materials are present in industrial uses, in military applications and in everyday life. Whether one engages in laser surgery with a neodymium-Y AG laser or one communicates overseas using optical fibers, the development of these materials is both scientifically and commercially of great interest. Much of the most innovative work has been done in the last 15 years in this area. A minor revolution in optical fiber communications has occurred with the development of erbium-doped fiber amplifiers. Solid-state laser development shifted into high-gear with the theoretical and experimental study of doubly-doped garnet lasers. Recent developments on semiconductor laser arrays are making diode pumped solid-state lasers commercially feasible. The purpose of this book is to detail these developments and to point out that many of the same underlying physical processes control advances in several diverse applications. For example, the basic science of energy transfer will be discussed by Zharikov et al. and Rotman for energy transfer and dopant-defect interactions, respectively; it will also be crucial in understanding cerium-doped scintilla tors, neodymium-chromium lasers, and up-conversion fiber lasers. As another example, phonon-induced non-radiative relaxation will appear in every chapter in this book.
Photoluminescence spectroscopy is an important approach for examining the optical interactions in semiconductors and optical devices with the goal of gaining insight into material properties. With contributions from researchers at the forefront of this field, Handbook of Luminescent Semiconductor Materials explores the use of this technique to stud
Luminescence, for example, as fluorescence, bioluminescence, and phosphorescence, can result from chemical changes, electrical energy, subatomic motions, reactions in crystals, or stimulation of an atomic system. This subject continues to have a major technological role for humankind in the form of applications such as organic and inorganic light emitters for flat panel and flexible displays such as plasma displays, LCD displays, and OLED displays. Luminescent Materials and Applications describes a wide range of materials and applications that are of current interest including organic light emitting materials and devices, inorganic light emitting diode materials and devices, down-conversion materials, nanomaterials, and powder and thin-film electroluminescent phosphor materials and devices. In addition, both the physics and the materials aspects of the field of solid-state luminescence are presented. Thus, the book may be used as a reference to gain an understanding of various types and mechanisms of luminescence and of the implementation of luminescence into practical devices. The book is aimed at postgraduate students (physicists, electrical engineers, chemical engineers, materials scientists, and engineers) and researchers in industry, for example, at lighting and display companies and academia involved in studying conduction in solids and electronic materials. It will also provide an excellent starting point for all scientists interested in luminescent materials. Finally it is hoped that this book will not only educate, but also stimulate further progress in this rapidly evolving field.
Everyone starting work in this field is faced with the lack of basic books. Here, two renowned researchers introduce the reader to luminescence and its applications, describing the principles of the luminescence processes in a clear way and dealing not only with physics, but also with the chemistry of systems. Particular attention is paid to materials such as lamp phosphors, cathode-ray and X-ray phosphors, scintillators and many other applications.
Explains the mutual influences between the physical and dynamic processes in solids and their lasing properties. This book provides insight into the physics and engineering of solid state lasers by integrating information from several disciplines, including solid state physics, materials science, photophysics, and dynamic processes in solids.
This book is intended for readers desiring a comprehensive analysis of the latest developments in widegap II-VI materials research for opto-electronic applications and basic insight into the fundamental underlying principles. Therefore, it is hoped that this book will serve two purposes. Firstly, to educate newcomers to this exciting area of physics and technology and, secondly, to provide specialists with useful references and new insights in related areas of II-VI materials research. The motivation for preparing this book originated from the need for a current review of this fertile and important field. A primary goal of this book is therefore to present an eclectic synthesis of these sometimes diverse fields of investigation. This book consists of three main sections, namely (1) Growth and Properties, (2) Materials Characterization and (3) Devices. Part One presents an overall perspective of the state of the art in the preparation of the widegap II-VI materials. Part Two concentrates on current topics pertinent to the characterization of these materials from the unique perspective of each of the authors. Part Three focuses on advances in the opto-electronic applications of these materials. The material in this section runs the gamut from addressing recent advances in device areas which date back to some of the earliest reported research in these materials, to tackling some quite new and exciting future directions.
This book covers the combined subjects of organic electronic and optoelectronic materials/devices. It is designed for classroom instruction at the senior college level. Highlighting emerging organic and polymeric optoelectronic materials and devices, it presents the fundamentals, principle mechanisms, representative examples, and key data.
This book provides a comprehensive account of the developments and current status in several fields of the application of radioactivity and ionising radiation. It covers such topics as radiation-based techniques, radiation’s applications in medicine, food and agriculture, its impact on industry, and its associated materials. The book will be of interest to a wide variety of readers including professionals in radiation medicine, industrial processes, food preservation, and agriculture.
The papers included in this issue of ECS Transactions were originally presented in the symposia ¿Tutorials in Nanotechnology: Focus on Luminescence and Display Materials¿, ¿Luminescence and Energy Efficiency¿, and ¿ Physics and Chemistry of Luminescence and Display Materials¿ held during the 218th meeting of The Electrochemical Society, in Las Vegas, Nevada, from October 10 to 15, 2010.
Developments in lasers continue to enable progress in many areas such as eye surgery, the recording industry and dozens of others. This book presents citations from the book literature for the last 25 years and groups them for ease of access which is also provided by subject, author and titles indexes.