Download Free Weathering Of Plastics Book in PDF and EPUB Free Download. You can read online Weathering Of Plastics and write the review.

In spite of extensive efforts, material weathering testing still requires improvement. This book presents findings and opinions of experts in material degradation testing. The aim is to improve testing methods and procedures. Materials are presented to show that photochemical degradation rate depends on a combination of environmental factors such as UV radiation, temperature, humidity, rain, stress, and concentration of reactive pollutants. The potential effect of each parameter of degradation on data gathered is discussed based on known results from a long experience in testing. This book contains data obtained in laboratories of the largest manufacturers of UV stabilizers and chemical companies that manufacture durable materials. The book gives details of testing procedures and choice of parameters of exposure which are crucial for obtaining laboratory results correlating with environmental performance of materials.In addition to exposure conditions, the book contains many suggestions on sample preparation and post-exposure testing. The effective use of these methods shortens testing time of materials and determines acceleration rate of testing. The book also gives examples of complete, well-designed weathering experiments which may be used as patterns for selection of parameters and techniques for new studies. The areas of research that still require more attention in future studies are clearly indicated.
This reference guide brings together a wide range of essential data on the effects of weather and UV light exposure on plastics and elastomers, enabling engineers to make optimal material choices and design decisions. In both normal and extreme environments, outdoor use has a variety of effects on different plastics and elastomers, including discoloring and brittleness. The data is supported by explanations of real-world engineering applications. The data tables in this book are supported by examples of real-world applications, enabling engineers and scientists to select the right materials for a given situation, across a wide range of sectors including construction, packaging, signage, consumer (e.g. toys, outdoor furniture), automotive and aerospace, defense, etc. The third edition includes new text chapters that provide the fundamental knowledge required to make best use of the data. Author Larry McKeen has also added detailed descriptions of the effect of weathering on the most common polymer classes such as polyolefins, polyamides, polyesters, elastomers, fluoropolymers, biodegradable plastics, etc., making this book an invaluable design guide as well as an industry standard data source. - Essential data and practical guidance for engineers and scientists working with plastics in outdoor applications and products - New introductory chapters on weathering processes and the effect of light and heat on plastics - 25% new data
Service Life Prediction of Polymers and Plastics Exposed to Outdoor Weathering discusses plastics and polymers and their unique applications, from sealants used in construction, to polymer composites used in planes. While these materials are important enablers for advanced technologies, exposure to weather changes the very properties of plastics that make them so useful. This book reviews current research needs and provides a consensus roadmap of the scientific barriers to validated predictive models for the response of polymers and plastics to outdoor exposure. Despite extensive efforts over the past 20-30 years, testing of polymeric materials in accelerated or natural weathering conditions and the interpretation of the weathering results still require substantial improvements. This book represents the state-of-the-art in the prediction techniques available and in development. Engineers and materials scientists working in this field will be able to use the content of this book to assess the strengths and challenges of a range of different methods and approaches. - Enables engineers and scientists in a range of industries to more successfully predict the durability of polymers, paints and coatings when exposed to weather - Provides the latest information to help determine the sustainability of polymeric materials - Reviews the current state-of-the-art in this area and identifies research needs that are followed by more detailed discussions of specific polymers and applications
Handbook of Material Weathering, Sixth Edition, is an essential guide to the effects of weathering on polymers and industrial products, presenting theory, stress factors, methods of weathering and testing and the effects of additives and environmental stress cracking. The book provides graphical illustrations and numerical data to examine the weathering of major polymers and industrial products, including mechanisms of degradation, effect of thermal processes, and characteristic changes in properties. The book also discusses recycling, corrosion and weathering, and the weathering of stone. This sixth edition updates this seminal work with recent developments and the latest data. Polymers and industrial plastics products are widely used in environments where they are vulnerable to the effects of weathering. Weathering stress factors can lead to deterioration or even complete failure. Material durability is therefore vital, and products for outdoor usage or actinic exposure are designed so that the effects of artificial and natural weathering are minimized. This book is an important reference source for those involved in studying material durability, producing materials for outdoor use and actinic exposure, research chemists in the photochemistry field, chemists and material scientists designing new materials, users of manufactured products, those who control the quality of manufactured products and students who want to apply their knowledge to real materials. - Offers detailed coverage of theory, stress factors and methods of weathering - Provides specific information and numerical data for 52 polymers and 42 groups of industrial products, including characteristic changes and degradation mechanisms - Discusses major additional topics, such as weathered materials for recycling and the interrelation between corrosion and weathering - Provides graphical illustrations and numerical data to examine the weathering of major polymers and industrial products
This extensively updated, comprehensive databook was created for design and application engineers, scientists, and material producer technical support and research and development personnel. Important weathering characteristics and material properties of plastics and elastomers are presented in discussion, tabular and graphical sections. It provides a ready reference for comparing materials in the same family as well as materials in different families.Data are presented on 80 major plastic and elastomer materials, including biodegradable or organic polymers. New to this edition, the resin chapters each contain textual summary information including category, general description, and weathering properties detailing information of the material's susceptibility or immunity to weathering including discussion of test results. Extensive references are provided. The resin chapter material supplier trade name product data are presented in graphical and tabular format, with results normalized to SI units, retaining the familiar format of the 1st edition and allowing easy comparison between materials and test conditions.
This book describes how man-made litter, primarily plastic, has spread into the remotest parts of the oceans and covers all aspects of this pollution problem from the impacts on wildlife and human health to socio-economic and political issues. Marine litter is a prime threat to marine wildlife, habitats and food webs worldwide. The book illustrates how advanced technologies from deep-sea research, microbiology and mathematic modelling as well as classic beach litter counts by volunteers contributed to the broad awareness of marine litter as a problem of global significance. The authors summarise more than five decades of marine litter research, which receives growing attention after the recent discovery of great oceanic garbage patches and the ubiquity of microscopic plastic particles in marine organisms and habitats. In 16 chapters, authors from all over the world have created a universal view on the diverse field of marine litter pollution, the biological impacts, dedicated research activities, and the various national and international legislative efforts to combat this environmental problem. They recommend future research directions necessary for a comprehensive understanding of this environmental issue and the development of efficient management strategies. This book addresses scientists, and it provides a solid knowledge base for policy makers, NGOs, and the broader public.
This book is open access under a CC BY 4.0 license. This volume focuses on microscopic plastic debris, also referred to as microplastics, which have been detected in aquatic environments around the globe and have accordingly raised serious concerns. The book explores whether microplastics represent emerging contaminants in freshwater systems, an area that remains underrepresented to date. Given the complexity of the issue, the book covers the current state-of-research on microplastics in rivers and lakes, including analytical aspects, environmental concentrations and sources, modelling approaches, interactions with biota, and ecological implications. To provide a broader perspective, the book also discusses lessons learned from nanomaterials and the implications of plastic debris for regulation, politics, economy, and society. In a research field that is rapidly evolving, it offers a solid overview for environmental chemists, engineers, and toxicologists, as well as water managers and policy-makers.
The study of polymer degradation and stabilisation is of considerable practical importance as the industrial uses of polymeric materials continue to expand. In this book, the authors lucidly relate technological phenomena to the chemistry and physics of degradation and stabilisation processes. Degradation embraces a variety of technologically important phenomena ranging from relatively low temperature processes such as 'weathering' of plastics, 'fatigue' of rubbers through the processing of polymers in shearing mixers to very high temperature processes such as flammability and ablation. All these technological phenomena have in common certain basic chemical reactions. Thus 'weathering' has its roots in photo-oxidation, 'fatigue' and melt-degradation in mechano-oxidation and flammability, and ablation in ablation in pyrolysis and vapour phase oxidation.
The manufacture of plastic as well as its indiscriminate disposal and destruction by incineration pollutes atmospheric, terrestrial, and aquatic ecosystems. Synthetic plastics do not break down; they accumulate in the environment as macro-, micro-, and nanoplastics. These particulate plastics are a major source of pollutants in soil and marine ecosystems. Particulate Plastics in Terrestrial and Aquatic Environments provides a fundamental understanding of the sources of these plastics and the threats they pose to the environment. The book demonstrates the ecotoxicity of particulate plastics using case studies and offers management practices to mitigate particulate plastic contamination in the environment. Features · Describes physical and chemical properties of particulate plastics in terrestrial and aquatic ecosystems · Presents information on characteristics of particulate plastics as impacted by weathering processes · Provides numerous approaches for managing particulate plastic contamination · Identifies sources of particulate plastics in the environment; distribution and characteristics of particulate plastics; and management strategies of particulate plastics Written by a global team of scientists, this book is for researchers in the fields of environmental safety and waste management or individuals interested in the impact of particulate plastics on environmental health.
This book presents the state of the art on the weathering of polymers and plastic materials in outdoor applications, comprising natural weathering, accelerated climatic weathering, laboratory artificial accelerated weathering, and lifetime prediction methodology. It summarizes the most suitable methods of instrumental analysis to access and quantify (when possible) degradation caused by weathering, while also covering the degradation and stabilization of polymers based on environmental and artificially induced factors. Innovative polymer additives and some developments in polymeric materials designed for outdoor applications are also included, emphasizing a few selected cases. the book intends to be an important reference source for those involved in the study of the durability of polymers and plastics, production of plastics for exterior applications, chemists responsible for quality control of plastic products, and researchers and students across plastics engineering, polymer science, polymer chemistry and environmental science.