Download Free Weak Convergence Of Stochastic Processes Book in PDF and EPUB Free Download. You can read online Weak Convergence Of Stochastic Processes and write the review.

Functionals on stochastic processes; Uniform convergence of empirical measures; Convergence in distribution in euclidean spaces; Convergence in distribution in metric spaces; The uniform metric on space of cadlag functions; The skorohod metric on D [0, oo); Central limit teorems; Martingales.
The purpose of this book is to present results on the subject of weak convergence to study invariance principles in statistical applications. Different techniques, formerly only available in a broad range of literature, are for the first time presen
The book deals with several closely related topics concerning approxima tions and perturbations of random processes and their applications to some important and fascinating classes of problems in the analysis and design of stochastic control systems and nonlinear filters. The basic mathematical methods which are used and developed are those of the theory of weak con vergence. The techniques are quite powerful for getting weak convergence or functional limit theorems for broad classes of problems and many of the techniques are new. The original need for some of the techniques which are developed here arose in connection with our study of the particular applica tions in this book, and related problems of approximation in control theory, but it will be clear that they have numerous applications elsewhere in weak convergence and process approximation theory. The book is a continuation of the author's long term interest in problems of the approximation of stochastic processes and its applications to problems arising in control and communication theory and related areas. In fact, the techniques used here can be fruitfully applied to many other areas. The basic random processes of interest can be described by solutions to either (multiple time scale) Ito differential equations driven by wide band or state dependent wide band noise or which are singularly perturbed. They might be controlled or not, and their state values might be fully observable or not (e. g. , as in the nonlinear filtering problem).
Applies the well-developed tools of the theory of weak convergenceof probability measures to large deviation analysis--a consistentnew approach The theory of large deviations, one of the most dynamic topics inprobability today, studies rare events in stochastic systems. Thenonlinear nature of the theory contributes both to its richness anddifficulty. This innovative text demonstrates how to employ thewell-established linear techniques of weak convergence theory toprove large deviation results. Beginning with a step-by-stepdevelopment of the approach, the book skillfully guides readersthrough models of increasing complexity covering a wide variety ofrandom variable-level and process-level problems. Representationformulas for large deviation-type expectations are a key tool andare developed systematically for discrete-time problems. Accessible to anyone who has a knowledge of measure theory andmeasure-theoretic probability, A Weak Convergence Approach to theTheory of Large Deviations is important reading for both studentsand researchers.
A comprehensive overview of weak convergence of stochastic processes and its application to the study of financial markets. Split into three parts, the first recalls the mathematics of stochastic processes and stochastic calculus with special emphasis on contiguity properties and weak convergence of stochastic integrals. The second part is devoted to the analysis of financial theory from the convergence point of view. The main problems, which include portfolio optimization, option pricing and hedging are examined, especially when considering discrete-time approximations of continuous-time dynamics. The third part deals with lattice- and tree-based computational procedures for option pricing both on stocks and stochastic bonds. More general discrete approximations are also introduced and detailed. Includes detailed examples.
Originally published in 1986, this valuable reference provides a detailed treatment of limit theorems and inequalities for empirical processes of real-valued random variables; applications of the theory to censored data, spacings, rank statistics, quantiles, and many functionals of empirical processes, including a treatment of bootstrap methods; and a summary of inequalities that are useful for proving limit theorems. At the end of the Errata section, the authors have supplied references to solutions for 11 of the 19 Open Questions provided in the book's original edition. Audience: researchers in statistical theory, probability theory, biostatistics, econometrics, and computer science.
From the reviews: "The material is self-contained, but it is technical and a solid foundation in probability and queuing theory is beneficial to prospective readers. [... It] is intended to be accessible to those with less background. This book is a must to researchers and graduate students interested in these areas." ISI Short Book Reviews
Stochastic Convergence, Second Edition covers the theoretical aspects of random power series dealing with convergence problems. This edition contains eight chapters and starts with an introduction to the basic concepts of stochastic convergence. The succeeding chapters deal with infinite sequences of random variables and their convergences, as well as the consideration of certain sets of random variables as a space. These topics are followed by discussions of the infinite series of random variables, specifically the lemmas of Borel-Cantelli and the zero-one laws. Other chapters evaluate the power series whose coefficients are random variables, the stochastic integrals and derivatives, and the characteristics of the normal distribution of infinite sums of random variables. The last chapter discusses the characterization of the Wiener process and of stable processes. This book will prove useful to mathematicians and advance mathematics students.
Kosorok’s brilliant text provides a self-contained introduction to empirical processes and semiparametric inference. These powerful research techniques are surprisingly useful for developing methods of statistical inference for complex models and in understanding the properties of such methods. This is an authoritative text that covers all the bases, and also a friendly and gradual introduction to the area. The book can be used as research reference and textbook.
This volume is the first to present a state-of-the-art overview of this field, with many results published for the first time. It covers the general conditions as well as the basic applications of the theory, and it covers and demystifies the vast and technically demanding Russian literature in detail. Its coverage is thorough, streamlined and arranged according to difficulty.