Download Free Weak Convergence Of Interacting Stochastic Systems Book in PDF and EPUB Free Download. You can read online Weak Convergence Of Interacting Stochastic Systems and write the review.

The Research Network on "Interacting stochastic systems of high complexity" set up by the German Research Foundation aimed at exploring and developing connections between research in infinite-dimensional stochastic analysis, statistical physics, spatial population models from mathematical biology, complex models of financial markets or of stochastic models interacting with other sciences. This book presents a structured collection of papers on the core topics, written at the close of the 6-year programme by the research groups who took part in it. The structure chosen highlights the interweaving of certain themes and certain interconnections discovered through the joint work. This yields a reference work on results and methods that will be useful to all who work between applied probability and the physical, economic, and life sciences.
Applies the well-developed tools of the theory of weak convergenceof probability measures to large deviation analysis--a consistentnew approach The theory of large deviations, one of the most dynamic topics inprobability today, studies rare events in stochastic systems. Thenonlinear nature of the theory contributes both to its richness anddifficulty. This innovative text demonstrates how to employ thewell-established linear techniques of weak convergence theory toprove large deviation results. Beginning with a step-by-stepdevelopment of the approach, the book skillfully guides readersthrough models of increasing complexity covering a wide variety ofrandom variable-level and process-level problems. Representationformulas for large deviation-type expectations are a key tool andare developed systematically for discrete-time problems. Accessible to anyone who has a knowledge of measure theory andmeasure-theoretic probability, A Weak Convergence Approach to theTheory of Large Deviations is important reading for both studentsand researchers.
This book provides recent results on the stochastic approximation of systems by weak convergence techniques. General and particular schemes of proofs for average, diffusion, and Poisson approximations of stochastic systems are presented, allowing one to simplify complex systems and obtain numerically tractable models.The systems discussed in the book include stochastic additive functionals, dynamical systems, stochastic integral functionals, increment processes and impulsive processes. All these systems are switched by Markov and semi-Markov processes whose phase space is considered in asymptotic split and merging schemes. Most of the results from semi-Markov processes are new and presented for the first time in this book.
Interactive particle systems is a branch of probability theory with close connections to mathematical physics and mathematical biology. This book takes three of the most important models in the area, and traces advances in our understanding of them since 1985. It explains and develops many of the most useful techniques in the field.
Weak convergence of stochastic processes is one of most important theories in probability theory. Not only probability experts but also more and more statisticians are interested in it. In the study of statistics and econometrics, some problems cannot be solved by the classical method. In this book, we will introduce some recent development of modern weak convergence theory to overcome defects of classical theory.Contents: "The Definition and Basic Properties of Weak Convergence: "Metric SpaceThe Definition of Weak Convergence of Stochastic Processes and Portmanteau TheoremHow to Verify the Weak Convergence?Two Examples of Applications of Weak Convergence"Convergence to the Independent Increment Processes: "The Basic Conditions of Convergence to the Gaussian Independent Increment ProcessesDonsker Invariance PrincipleConvergence of Poisson Point ProcessesTwo Examples of Applications of Point Process Method"Convergence to Semimartingales: "The Conditions of Tightness for Semimartingale SequenceWeak Convergence to SemimartingaleWeak Convergence to Stochastic Integral I: The Martingale Convergence ApproachWeak Convergence to Stochastic Integral II: Kurtz and Protter's ApproachStable Central Limit Theorem for SemimartingalesAn Application to Stochastic Differential EquationsAppendix: The Predictable Characteristics of Semimartingales"Convergence of Empirical Processes: "Classical Weak Convergence of Empirical ProcessesWeak Convergence of Marked Empirical ProcessesWeak Convergence of Function Index Empirical ProcessesWeak Convergence of Empirical Processes Involving Time-Dependent dataTwo Examples of Applications in Statistics Readership: Graduate students and researchers in probability & statistics and econometrics.
This book presents broadly applicable methods for the large deviation and moderate deviation analysis of discrete and continuous time stochastic systems. A feature of the book is the systematic use of variational representations for quantities of interest such as normalized logarithms of probabilities and expected values. By characterizing a large deviation principle in terms of Laplace asymptotics, one converts the proof of large deviation limits into the convergence of variational representations. These features are illustrated though their application to a broad range of discrete and continuous time models, including stochastic partial differential equations, processes with discontinuous statistics, occupancy models, and many others. The tools used in the large deviation analysis also turn out to be useful in understanding Monte Carlo schemes for the numerical approximation of the same probabilities and expected values. This connection is illustrated through the design and analysis of importance sampling and splitting schemes for rare event estimation. The book assumes a solid background in weak convergence of probability measures and stochastic analysis, and is suitable for advanced graduate students, postdocs and researchers.
The lecture courses of the CIME Summer School on Probabilistic Models for Nonlinear PDE's and their Numerical Applications (April 1995) had a three-fold emphasis: first, on the weak convergence of stochastic integrals; second, on the probabilistic interpretation and the particle approximation of equations coming from Physics (conservation laws, Boltzmann-like and Navier-Stokes equations); third, on the modelling of networks by interacting particle systems. This book, collecting the notes of these courses, will be useful to probabilists working on stochastic particle methods and on the approximation of SPDEs, in particular, to PhD students and young researchers.
A nonlinear Markov evolution is a dynamical system generated by a measure-valued ordinary differential equation with the specific feature of preserving positivity. This feature distinguishes it from general vector-valued differential equations and yields a natural link with probability, both in interpreting results and in the tools of analysis. This brilliant book, the first devoted to the area, develops this interplay between probability and analysis. After systematically presenting both analytic and probabilistic techniques, the author uses probability to obtain deeper insight into nonlinear dynamics, and analysis to tackle difficult problems in the description of random and chaotic behavior. The book addresses the most fundamental questions in the theory of nonlinear Markov processes: existence, uniqueness, constructions, approximation schemes, regularity, law of large numbers and probabilistic interpretations. Its careful exposition makes the book accessible to researchers and graduate students in stochastic and functional analysis with applications to mathematical physics and systems biology.
In the mathematical treatment of many problems which arise in physics, economics, engineering, management, etc., the researcher frequently faces two major difficulties: infinite dimensionality and randomness of the evolution process. Infinite dimensionality occurs when the evolution in time of a process is accompanied by a space-like dependence; for example, spatial distribution of the temperature for a heat-conductor, spatial dependence of the time-varying displacement of a membrane subject to external forces, etc. Randomness is intrinsic to the mathematical formulation of many phenomena, such as fluctuation in the stock market, or noise in communication networks. Control theory of distributed parameter systems and stochastic systems focuses on physical phenomena which are governed by partial differential equations, delay-differential equations, integral differential equations, etc., and stochastic differential equations of various types. This has been a fertile field of research with over 40 years of history, which continues to be very active under the thrust of new emerging applications. Among the subjects covered are: Control of distributed parameter systems; Stochastic control; Applications in finance/insurance/manufacturing; Adapted control; Numerical approximation . It is essential reading for applied mathematicians, control theorists, economic/financial analysts and engineers.