Download Free Waves In An Impossible Sea Book in PDF and EPUB Free Download. You can read online Waves In An Impossible Sea and write the review.

A theoretical physicist takes readers on an awe-inspiring journey—found in "no other book" (Science)—to discover how the universe generates everything from nothing at all: "If you want to know what's really going on in the realms of relativity and particle physics, read this book" (Sean Carroll, author of The Biggest Ideas in the Universe). In Waves in an Impossible Sea, physicist Matt Strassler tells a startling tale of elementary particles, human experience, and empty space. He begins with a simple mystery of motion. When we drive at highway speeds with the windows down, the wind beats against our faces. Yet our planet hurtles through the cosmos at 150 miles per second, and we feel nothing of it. How can our voyage be so tranquil when, as Einstein discovered, matter warps space, and space deflects matter? The answer, Strassler reveals, is that empty space is a sea, albeit a paradoxically strange one. Much like water and air, it ripples in various ways, and we ourselves, made from its ripples, can move through space as effortlessly as waves crossing an ocean. Deftly weaving together daily experience and fundamental physics—the musical universe, the enigmatic quantum, cosmic fields, and the Higgs boson—Strassler shows us how all things, familiar and unfamiliar, emerge from what seems like nothing at all. Accessible and profound, Waves in an Impossible Sea is the ultimate guide to our place in the universe.
'Particle or Wave' explains the origins and development of modern physical concepts about matter and the controversies surrounding them.
This book was published in 2004. The Interaction of Ocean Waves and Wind describes in detail the two-way interaction between wind and ocean waves and shows how ocean waves affect weather forecasting on timescales of 5 to 90 days. Winds generate ocean waves, but at the same time airflow is modified due to the loss of energy and momentum to the waves; thus, momentum loss from the atmosphere to the ocean depends on the state of the waves. This volume discusses ocean wave evolution according to the energy balance equation. An extensive overview of nonlinear transfer is given, and as a by-product the role of four-wave interactions in the generation of extreme events, such as freak waves, is discussed. Effects on ocean circulation are described. Coupled ocean-wave, atmosphere modelling gives improved weather and wave forecasts. This volume will interest ocean wave modellers, physicists and applied mathematicians, and engineers interested in shipping and coastal protection.
Take a journey through the oceans of the world in this beautiful book, made entirely from hand-pressed plants. Artist Helen Ahpornsiri transforms silky seaweeds, feathery algae and bright coastal blooms into playful penguins, scuttling crabs and schools of silvery sharks. Turn the page to explore each corner of the oceans, from hidden rock pools to the darkest depths. Marvel as plants transform into marvellous creatures, and discover the magic and beauty that lies beneath the waves . . .
A timeless story of first love set in a remote fishing village in Japan. • "A story that is both happy and a work of art.... Altogether a joyous and lovely thing." —The New York Times A young fisherman is entranced at the sight of the beautiful daughter of the wealthiest man in the village. They fall in love, but must then endure the calumny and gossip of the villagers.
INSTANT NEW YORK TIMES BESTSELLER As you read these words, copies of you are being created. Sean Carroll, theoretical physicist and one of this world’s most celebrated writers on science, rewrites the history of twentieth-century physics. Already hailed as a masterpiece, Something Deeply Hidden shows for the first time that facing up to the essential puzzle of quantum mechanics utterly transforms how we think about space and time. His reconciling of quantum mechanics with Einstein’s theory of relativity changes, well, everything. Most physicists haven’t even recognized the uncomfortable truth: Physics has been in crisis since 1927. Quantum mechanics has always had obvious gaps—which have come to be simply ignored. Science popularizers keep telling us how weird it is, how impossible it is to understand. Academics discourage students from working on the "dead end" of quantum foundations. Putting his professional reputation on the line with this audacious yet entirely reasonable book, Carroll says that the crisis can now come to an end. We just have to accept that there is more than one of us in the universe. There are many, many Sean Carrolls. Many of every one of us. Copies of you are generated thousands of times per second. The Many-Worlds theory of quantum behavior says that every time there is a quantum event, a world splits off with everything in it the same, except in that other world the quantum event didn't happen. Step-by-step in Carroll's uniquely lucid way, he tackles the major objections to this otherworldly revelation until his case is inescapably established. Rarely does a book so fully reorganize how we think about our place in the universe. We are on the threshold of a new understanding—of where we are in the cosmos, and what we are made of.
Describes the stochastic method for ocean wave analysis - vital information for design and operation of ships.
A Nobel-winning physicist argues that fundamental physical laws are found not in the world of atoms, but in the macroscopic world around us In this age of superstring theories and Big Bang cosmology, we're used to thinking of the unknown as impossibly distant from our everyday lives. But in A Different Universe, Nobel Laureate Robert Laughlin argues that the scientific frontier is right under our fingers. Instead of looking for ultimate theories, Laughlin considers the world of emergent properties-meaning the properties, such as the hardness and shape of a crystal, that result from the organization of large numbers of atoms. Laughlin shows us how the most fundamental laws of physics are in fact emergent. A Different Universe is a truly mind-bending book that shows us why everything we think about fundamental physical laws needs to change.
"A thorough, illuminating exploration of the most consequential controversy raging in modern science." --New York Times Book Review An Editor's Choice, New York Times Book Review Longlisted for PEN/E.O. Wilson Prize for Literary Science Writing Longlisted for Goodreads Choice Award Every physicist agrees quantum mechanics is among humanity's finest scientific achievements. But ask what it means, and the result will be a brawl. For a century, most physicists have followed Niels Bohr's solipsistic and poorly reasoned Copenhagen interpretation. Indeed, questioning it has long meant professional ruin, yet some daring physicists, such as John Bell, David Bohm, and Hugh Everett, persisted in seeking the true meaning of quantum mechanics. What Is Real? is the gripping story of this battle of ideas and the courageous scientists who dared to stand up for truth. "An excellent, accessible account." --Wall Street Journal "Splendid. . . . Deeply detailed research, accompanied by charming anecdotes about the scientists." --Washington Post
This volume deals with those topics of mathematical physics, associated with the study of the Schrödinger equation, which are considered to be the most important. Chapter 1 presents the basic concepts of quantum mechanics. Chapter 2 provides an introduction to the spectral theory of the one-dimensional Schrödinger equation. Chapter 3 opens with a discussion of the spectral theory of the multi-dimensional Schrödinger equation, which is a far more complex case and requires careful consideration of aspects which are trivial in the one-dimensional case. Chapter 4 presents the scattering theory for the multi-dimensional non-relativistic Schrödinger equation, and the final chapter is devoted to quantization and Feynman path integrals. These five main chapters are followed by three supplements, which present material drawn on in the various chapters. The first two supplements deal with general questions concerning the spectral theory of operators in Hilbert space, and necessary information relating to Sobolev spaces and elliptic equations. Supplement 3, which essentially stands alone, introduces the concept of the supermanifold which leads to a more natural treatment of quantization. Although written primarily for mathematicians who wish to gain a better awareness of the physical aspects of quantum mechanics and related topics, it will also be useful for mathematical physicists who wish to become better acquainted with the mathematical formalism of quantum mechanics. Much of the material included here has been based on lectures given by the authors at Moscow State University, and this volume can also be recommended as a supplementary graduate level introduction to the spectral theory of differential operators with both discrete and continuous spectra. This English edition is a revised, expanded version of the original Soviet publication.