Download Free Water Treatment Processes Book in PDF and EPUB Free Download. You can read online Water Treatment Processes and write the review.

Industrial Water Treatment Process Technology begins with a brief overview of the challenges in water resource management, covering issues of plenty and scarcity-spatial variation, as well as water quality standards. In this book, the author includes a clear and rigorous exposition of the various water resource management approaches such as: separation and purification (end of discharge pipe), zero discharge approach (green process development), flow management approach, and preservation and control approach. This coverage is followed by deeper discussion of individual technologies and their applications. - Covers water treatment approaches including: separation and purification—end of discharge pipe; zero discharge approach; flow management approach; and preservation and control approach - Discusses water treatment process selection, trouble shooting, design, operation, and physico-chemical and treatment - Discusses industry-specific water treatment processes
An Overview of Water and Wastewater; What Filtration Is All About; Chemical Additives that Enhance Filtration; Selecting the Right Filter Media; What Pressure- and Cake-Filtration Are All; Cartridge and Other Filters Worth Mentioning; What Sand Filtration is All About; Sedimentation, Clarification, Flotation, and Membrane Separation Technologies; Ion Exchange and Carbon Adsorption; Water Sterilization Technologies; Treating the Sludge; Glossary; Index.
Principles of Water and Wastewater Treatment Processes is the third book in the Water and Wastewater Process Technologies Series. The book outlines the principle unit operations that are involved in the separation, degradation and utilisation of organic and inorganic matter during water and wastewater treatment. The module builds on the subjects of chemistry, biology and engineering covered in Process Science and Engineering for Water and Wastewater Treatment (Module 1) and provides a descriptive introduction to unit operations that are further described with design and operational details in later books in the series. The text of Principles of Water and Wastewater Treatment Processes has been divided into the following Units: Water Quality Process Flowsheeting Physical Processes Chemical Processes Sorption Processes Biological Processes Membrane Processes Sludge Treatment Utilisation Odour Management These units have has been designed for individual self-paced study that includes photographs, illustrations and tables and describe the form, function and application of unit operations for the treatment of water and wastewater. Each section of the text gives step-by-step learning in a particular subject, that includes an approximation of how long you will need to spend on that section and provides key points that highlight the principles of the different sections. Each unit includes exercises to help understand the material in the text, self-assessment questions to test your understanding and text references.
Carefully designed to balance coverage of theoretical and practical principles, Fundamentals of Water Treatment Unit Processes delineates the principles that support practice, using the unit processes approach as the organizing concept. The author covers principles common to any kind of water treatment, for example, drinking water, municipal wastew
Water Treatment Processes: Simple Options bridges the gap in the existing literature by emphasizing low-cost and simple treatment technologies as well as the conventional options. The appropriateness and the economy of the technology must be an integral part of the selection process. This book emphasizes application of the methods and outlines their design criteria in a simplified manner. The authors discuss in detail process modifications and upgrading of conventional treatment facilities. The first two chapters introduce the water quantity and quality requirements and outline both conventional and advanced water treatment processes. The subsequent six chapters extensively discuss the six unit processes in drinking water treatment. Emphasis is given to low-cost methods that can be successfully applied in developing countries.
This book is divided into three sections: the first reviews the main processes available for treating water for drinking (potable) purposes, the second goes into some detail about the design and operation of the non-filtration (clarification) processes, and the third deals exclusively with filtration and related applications. It is intended as a source of practical information rather than a theoretical research treatise and includes discussion of component parts of the process units with reasons for design features as well as operating principles.This book fills a gap between general reviews and research papers, and contains much information which is based on experience passed down within organisations and which tends not to be published.
Advanced Oxidation Processes (AOPs) rely on the efficient generation of reactive radical species and are increasingly attractive options for water remediation from a wide variety of organic micropollutants of human health and/or environmental concern. Advanced Oxidation Processes for Water Treatment covers the key advanced oxidation processes developed for chemical contaminant destruction in polluted water sources, some of which have been implemented successfully at water treatment plants around the world. The book is structured in two sections; the first part is dedicated to the most relevant AOPs, whereas the topics covered in the second section include the photochemistry of chemical contaminants in the aquatic environment, advanced water treatment for water reuse, implementation of advanced treatment processes for drinking water production at a state-of-the art water treatment plant in Europe, advanced treatment of municipal and industrial wastewater, and green technologies for water remediation. The advanced oxidation processes discussed in the book cover the following aspects: - Process principles including the most recent scientific findings and interpretation. - Classes of compounds suitable to AOP treatment and examples of reaction mechanisms. - Chemical and photochemical degradation kinetics and modelling. - Water quality impact on process performance and practical considerations on process parameter selection criteria. - Process limitations and byproduct formation and strategies to mitigate any potential adverse effects on the treated water quality. - AOP equipment design and economics considerations. - Research studies and outcomes. - Case studies relevant to process implementation to water treatment. - Commercial applications. - Future research needs. Advanced Oxidation Processes for Water Treatment presents the most recent scientific and technological achievements in process understanding and implementation, and addresses to anyone interested in water remediation, including water industry professionals, consulting engineers, regulators, academics, students. Editor: Mihaela I. Stefan - Trojan Technologies - Canada
The suitability of Advanced Oxidation Processes (AOPs) for pollutant degradation was recognised in the early 1970s and much research and development work has been undertaken to commercialise some of these processes. AOPs have shown great potential in treating pollutants at both low and high concentrations and have found applications as diverse as ground water treatment, municipal wastewater sludge destruction and VOCs control. Advanced Oxidation Processes for Water and Wastewater Treatment is an overview of the advanced oxidation processes currently used or proposed for the remediation of water, wastewater, odours and sludge. The book contains two opening chapters which present introductions to advanced oxidation processes and a background to UV photolysis, seven chapters focusing on individual advanced oxidation processes and, finally, three chapters concentrating on selected applications of advanced oxidation processes. Advanced Oxidation Processes for Water and Wastewater Treatment will be invaluable to readers interested in water and wastewater treatment processes, including professionals and suppliers, as well as students and academics studying in this area. Dr Simon Parsons is a Senior Lecturer in Water Sciences at Cranfield University with ten years' experience of industrial and academic research and development.
Adsorption Processes for Water Treatment discusses the application of adsorption in water purification. The book is comprised of 10 chapters that detail the carbon and resin adsorptive processes for potable water treatment. The text first covers the elements of surface chemistry and then proceeds to discussing adsorption models. Chapter 3 tackles the kinetics of adsorption, while Chapter 4 deals with batch systems and fixed fluid beds. Next, the book talks about the physical and chemical properties of carbon. The next two chapters discuss the adsorption of organic compounds and the removal of inorganic compounds, respectively. The eighth chapter presents operational, pilot plant, and case studies. Chapter 9 discusses the biological activated carbon treatment of drinking water, and Chapter 10 covers the adsorption of macroreticular resins. The book will be of great use to both researchers and professionals involved in the research and development of water treatment process.
The principle of the conventional activated sludge (CAS) for municipal wastewater treatment is primarily based on biological oxidation by which organic matters are converted to biomass and carbon dioxide. After more than 100 years’ successful application, the CAS process is receiving increasing critiques on its high energy consumption and excessive sludge generation. Currently, almost all municipal wastewater treatment plants with the CAS as a core process are being operated in an energy-negative fashion. To tackle such challenging situations, there is a need to re-examine the present wastewater treatment philosophy by developing and adopting novel process configurations and emerging technologies. The solutions going forward should rely on the ways to improve direct energy recovery from wastewater, while minimizing in-plant energy consumption. This book begins with a critical overview of the energy situation and challenges in current municipal wastewater treatment plants, showing the necessity of the paradigm shift from removal to recovery in terms of energy and resource. As such, the concept of A-B process is discussed in detail in the book. It appears that various A-B process configurations are able to provide possible engineering solutions in which A-stage is primarily designed for COD capture with the aim for direct anaerobic treatment without producing excessive biosludge, while B-stage is designated for nitrogen removal. Making the wastewater treatment energy self-sustainable is obviously of global significance and eventually may become a game changer for the global market of the municipal wastewater reclamation technology. The principal audiences include practitioners, professionals, university researchers, undergraduate and postgraduate students who are interested and specialized in municipal wastewater treatment and process design, environmental engineering, and environmental biotechnology.