Download Free Water Flow In Soils Book in PDF and EPUB Free Download. You can read online Water Flow In Soils and write the review.

The new edition of a bestseller, Water Flow in Soils bridges the fields of soil physics-where descriptions of water flow tend to be microscopic- and hydrology - where they tend to be macroscopic. Unlike other physics laden texts, this work conveys the fundamental concepts of water flow in soils with clear and essentially nonmathematical explanation
From reviews of the first edition: "well organized . . . Recommended as an introductory text for undergraduates" -- AAAS Science Books and Films "well written and illustrated" -- Bulletin of the American Meteorological Society
Soil and Water: Physical Principles and Processes describes the physical principles governing the soil-water system and particularly the sequence of processes constituting the cycle of water in the field. Organized into two parts, with a total of 11 chapters, this book first discusses the basic physical properties of both soil and water. Some chapters deal with the state of water in soil and flow of water in saturated and unsaturated soil. The second part focuses on the aspects of field water cycle, starting from the entry of water into soil to the redistribution of soil moisture. It also describes the groundwater drainage, evaporation from bare-surface soils, uptake of soil water by plants, and the water and energy balance in the field. This work is meant for students and professional workers in soil physics and other related disciplines who need or might be interested in a fundamental and up-to-date exposition of soil physics.
Principles of Soil and Plant Water Relations, 2e describes the principles of water relations within soils, followed by the uptake of water and its subsequent movement throughout and from the plant body. This is presented as a progressive series of physical and biological interrelations, even though each topic is treated in detail on its own. The book also describes equipment used to measure water in the soil-plant-atmosphere system. At the end of each chapter is a biography of a scientist whose principles are discussed in the chapter. In addition to new information on the concept of celestial time, this new edition also includes new chapters on methods to determine sap flow in plants dual-probe heat-pulse technique to monitor water in the root zone. - Provides the necessary understanding to address advancing problems in water availability for meeting ecological requirements at local, regional and global scales - Covers plant anatomy: an essential component to understanding soil and plant water relations
This book presents a rigorous mathematical development of soil water and contaminant flow in variably saturated and saturated soils. Analytical and numerical methods are balanced: computer programs, among them MathCad and Fortran, are presented, and more than 150 practice and discussion questions are included. Students are thus exposed not only to theory but also to an array of solutions techniques. Those using the book as a reference will appreciate the careful development of basic flow equations, the inclusion of solutions and methodology currently available only in journals and proceedings volumes, and the examples and calculations directly applicable to their own work.
Water Relations of Plants and Soils, successor to the seminal 1983 book by Paul Kramer, covers the entire field of water relations using current concepts and consistent terminology. Emphasis is on the interdependence of processes, including rate of water absorption, rate of transpiration, resistance to water flow into roots, soil factors affecting water availability. New trends in the field, such as the consideration of roots (rather than leaves) as the primary sensors of water stress, are examined in detail. Addresses the role of water in the whole range of plant activities Describes molecular mechanisms of water action in the context of whole plants Synthesizes recent scientific findings Relates current concepts to agriculture and ecology Provides a summary of methods
This Encyclopedia of Agrophysics will provide up-to-date information on the physical properties and processes affecting the quality of the environment and plant production. It will be a "first-up" volume which will nicely complement the recently published Encyclopedia of Soil Science, (November 2007) which was published in the same series. In a single authoritative volume a collection of about 250 informative articles and ca 400 glossary terms covering all aspects of agrophysics will be presented. The authors will be renowned specialists in various aspects in agrophysics from a wide variety of countries. Agrophysics is important both for research and practical use not only in agriculture, but also in areas like environmental science, land reclamation, food processing etc. Agrophysics is a relatively new interdisciplinary field closely related to Agrochemistry, Agrobiology, Agroclimatology and Agroecology. Nowadays it has been fully accepted as an agricultural and environmental discipline. As such this Encyclopedia volume will be an indispensable working tool for scientists and practitioners from different disciplines, like agriculture, soil science, geosciences, environmental science, geography, and engineering.
Fluid flow and solute transport within the vadose zone, the unsaturated zone between the land surface and the water table, can be the cause of expanded plumes arising from localized contaminant sources. An understanding of vadose zone processes is, therefore, an essential prerequisite for cost-effective contaminant remediation efforts. In addition, because such features are potential avenues for rapid transport of chemicals from contamination sources to the water table, the presence of fractures and other channel-like openings in the vadose zone poses a particularly significant problem, Conceptual Models of Flow and Transport in the Fractured Vadose Zone is based on the work of a panel established under the auspices of the U.S. National Committee for Rock Mechanics. It emphasizes the importance of conceptual models and goes on to review the conceptual model development, testing, and refinement processes. The book examines fluid flow and transport mechanisms, noting the difficulty of modeling solute transport, and identifies geochemical and environmental tracer data as important components of the modeling process. Finally, the book recommends several areas for continued research.
Provides an essential introduction to modeling terrestrial ecosystems in Earth system models for graduate students and researchers.