Download Free Voltage Stability In Electric Power System Book in PDF and EPUB Free Download. You can read online Voltage Stability In Electric Power System and write the review.

Voltage Stability is a relatively recent and challenging problem in Power Systems Engineering. It is gaining in importance as the trend of operating power systems closer to their limits continues to increase. Voltage Stability of Electric Power Systems presents a clear description of voltage instability and collapse phenomena. It proposes a uniform and coherent theoretical framework for analysis and covers state-of-the-art methods. The book describes practical methods that can be used for voltage security assessment and offers a variety of examples.
Provides solutions to everyday voltage stability problems increasingly faced by engineers in electric power plants. Table of Contents: General Aspects of Electric Power Systems; What is Voltage Stability; Transmission System Reactive Power Compensation and Control; Power System Loads; Generation Characteristics; Simulation of Equivalent Systems; Voltage Stability of a Large System; Voltage Stability with HVDC Links; Power System Planning and Operating Guidelines. Appendices: A. Notes on the Per Unit System; B. Voltage Stability and the Power Flow Problem; C. Power Flow Simulation Methodology; D. Dynamic Analysis Methods; E. Equivalent System 2 Data; F. Voltage Instability Incidents. Index. Illustrations.
The understanding of power system voltage stability has become increasingly important due to day by day increase in electricity demand and liberalization policy of electricity markets. Therefore, voltage stability has become significantly important during the past decades. Both voltage stability formulation and indices are covered in this book along with an easily comprehensible manner and detailed exposition of the voltage stability indices' fundamental. However, the content of this book is considered serviceable in advanced level. The author combines his knowledge with reporting of accurate update information to illustrate the voltage stability indices and compared how to distinguish numbers of these indices in view of theirs similarity, functionality, applicability, formulation, merit, demerit, and overall performances. This book will serve as a valuable guide for the typical reader. That the readers had in mind were researchers, engineers, planners, and other professionals involved in the assessment of voltage instability in electric power system. The prerequisite for this book is suggested the basic knowledge of power system analysis and voltage stability subjects. The authorship methodology of this book had been based on the reference book style.
As the demand for efficient energy sources continues to grow, electrical systems are becoming more essential to meet these increased needs. Electrical generation and transmission plans must remain cost-effective, reliable, and flexible for further future expansion. As these systems are being utilized more frequently, it becomes imperative to find ways of optimizing their overall function. Novel Advancements in Electrical Power Planning and Performance is an essential reference source that provides vital research on the specific challenges, issues, strategies, and solutions that are associated with electrical transmission and distribution systems and features emergent methods and research in the systemic and strategic planning of energy usage. Featuring research on topics such as probabilistic modeling, voltage stability, and radial distribution, this book is ideally designed for electrical engineers, practitioners, power plant managers, investors, industry professionals, researchers, academicians, and students seeking coverage on the methods and profitability of electrical expansion planning.
This book describes comprehensively theories and methods of the power system voltage stability. It first introduces the basic theory of the power system and the basic concept and classification of the power system stability and discusses the basic concepts of voltage stability, including the mechanism of voltage stability, and influencing factors of transient and medium-term and long-term voltage stability. This book also describes the elemental characteristics and models of important power system in voltage stability analysis and discusses the theories and methods of analysis on steady, transient and medium-term and long-term voltage stability analysis, respectively. Then, this book introduces the measures to improve the voltage stability. Finally, two examples of voltage stability analysis in engineering applications are introduced. This book is useful as a reference for engineers and technicians who are engaged in dispatching operation, planning, design and scientific research of the power system, and teachers and students of electrical engineering major in colleges and universities.
This book brings together real-world accounts of using voltage stability assessment (VSA) and transient stability assessment (TSA) tools for grid management. Chapters are written by leading experts in the field who have used these tools to manage their grids and can provide readers with a unique and international perspective. Case studies and success stories are presented by those who have used these tools in the field, making this book a useful reference for different utilities worldwide that are looking into implementing these tools, as well as students and practicing engineers who are interested in learning the real-time applications of VSA and TSA for grid operation.
This book provides comprehensive details on continuation power flow, and reviews concepts in bifurcation theory and continuation methods for assessing power system voltage stability. The author proposes a uniform framework that provides computational approaches for both short-term and long-term voltage stability phenomena. Readers can access the author’s web-based simulation tools, which are based on the advice in this book, to simulate tests of systems up to the size of 200 busses.
This book aims to provide insights on new trends in power systems operation and control and to present, in detail, analysis methods of the power system behavior (mainly its dynamics) as well as the mathematical models for the main components of power plants and the control systems implemented in dispatch centers. Particularly, evaluation methods for rotor angle stability and voltage stability as well as control mechanism of the frequency and voltage are described. Illustrative examples and graphical representations help readers across many disciplines acquire ample knowledge on the respective subjects.
A thorough and exhaustive presentation of theoretical analysis and practical techniques for the small-signal analysis and control of large modern electric power systems as well as an assessment of their stability and damping performance.
Based on the author’s twenty years of experience, this book shows the practicality of modern, conceptually new, wide area voltage control in transmission and distribution smart grids, in detail. Evidence is given of the great advantages of this approach, as well as what can be gained by new control functionalities which modern technologies now available can provide. The distinction between solutions of wide area voltage regulation (V-WAR) and wide area voltage protection (V-WAP) are presented, demonstrating the proper synergy between them when they operate on the same power system as well as the simplicity and effectiveness of the protection solution in this case. The author provides an overview and detailed descriptions of voltage controls, distinguishing between generalities of underdeveloped, on-field operating applications and modern and available automatic control solutions, which are as yet not sufficiently known or perceived for what they are: practical, high-performance and reliable solutions. At the end of this thorough and complex preliminary analysis the reader sees the true benefits and limitations of more traditional voltage control solutions, and gains an understanding and appreciation of the innovative grid voltage control and protection solutions here proposed; solutions aimed at improving the security, efficiency and quality of electrical power system operation around the globe. Voltage Control and Protection in Electrical Power Systems: from System Components to Wide Area Control will help to show engineers working in electrical power companies and system operators the significant advantages of new control solutions and will also interest academic control researchers studying ways of increasing power system stability and efficiency.