Download Free Vlsi Soc From Algorithms To Circuits And System On Chip Design Book in PDF and EPUB Free Download. You can read online Vlsi Soc From Algorithms To Circuits And System On Chip Design and write the review.

This book contains extended and revised versions of the best papers presented at the 20th IFIP WG 10.5/IEEE International Conference on Very Large Scale Integration, VLSI-SoC 2012, held in Santa Cruz, CA, USA, in October 2012. The 12 papers included in the book were carefully reviewed and selected from the 33 full papers presented at the conference. The papers cover a wide range of topics in VLSI technology and advanced research. They address the current trend toward increasing chip integration and technology process advancements bringing about stimulating new challenges both at the physical and system-design levels, as well as in the test of these systems.
This book contains extended and revised versions of the best papers that have been presented during the twelfth edition of the IFIP TC10/WG10.5 International Conference on Very Large Scale Integration, a Global System-on-a-Chip Design & CAD Conference. The 12* edition was held at the Lufthansa Training Center in Seeheim-Jugenheim, south of Darmstadt, Germany (December 1-3, 2003). Previous conferences have taken place in Edinburgh (81), Trondheim (83), Tokyo (85), Vancouver (87), Munich (89), Edinburgh (91), Grenoble (93), Tokyo (95), Gramado (97), Lisbon (99)andMontpellier(01). The purpose of this conference, sponsored by IFIP TC 10 Working Group 10.5, is to provide a forum to exchange ideas and show research results in the field of microelectronics design. The current trend toward increasing chip integration brings about exhilarating new challenges both at the physical and system-design levels: this conference aims to address these exciting new issues. The 2003 edition of VLSI-SoC conserved the traditional structure, which has been successful in previous editions. The quality of submissions (142 papers) made the selection process difficult, but finally 57 papers and 14 posters were accepted for presentation in VLSI-SoC 2003. Submissions came from Austria, Bulgaria, Brazil, Canada, Egypt, England, Estonia, Finland, France, Germany, Greece, Hungary, India, Iran, Israel, Italy, Japan, Korea, Malaysia, Mexico, Netherlands, Poland, Portugal, Romania, Spain, Sweden, Taiwan and the United States of America. From 57 papers presented at the conference, 18 were selected to have an extended and revised version included in this book.
This book examines the issue of design of fully-integrated frequency synthesizers suitable for system-on-a-chip (SOC) processors. This book takes a more global design perspective in jointly examining the design space at the circuit level as well as at the architectural level. The coverage of the book is comprehensive and includes summary chapters on circuit theory as well as feedback control theory relevant to the operation of phase locked loops (PLLs). On the circuit level, the discussion includes low-voltage analog design in deep submicron digital CMOS processes, effects of supply noise, substrate noise, as well device noise. On the architectural level, the discussion includes PLL analysis using continuous-time as well as discrete-time models, linear and nonlinear effects of PLL performance, and detailed analysis of locking behavior. The material then develops into detailed circuit and architectural analysis of specific clock generation blocks. This includes circuits and architectures of PLLs with high power supply noise immunity and digital PLL architectures where the loop filter is digitized. Methods of generating low-spurious sampling clocks for discrete-time analog blocks are then examined. This includes sigma-delta fractional-N PLLs, Direct Digital Synthesis (DDS) techniques and non-conventional uses of PLLs. Design for test (DFT) issues as they arise in PLLs are then discussed. This includes methods of accurately measuring jitter and built-in-self-test (BIST) techniques for PLLs. Finally, clocking issues commonly associated to system-on-a-chip (SOC) designs, such as multiple clock domain interfacing and partitioning, and accurate clock phase generation techniques using delay-locked loops (DLLs) are also addressed. The book provides numerous real world applications, as well as practical rules-of-thumb for modern designers to use at the system, architectural, as well as the circuit level. This book is well suited for practitioners as well as graduate level students who wish to learn more about time-domain analysis and design of frequency synthesis techniques.
This book contains extended and revised versions of the best papers presented at the 24th IFIP WG 10.5/IEEE International Conference on Very Large Scale Integration, VLSI-SoC 2016, held in Tallinn, Estonia, in September 2016. The 11 papers included in the book were carefully reviewed and selected from the 36 full papers presented at the conference. The papers cover a wide range of topics in VLSI technology and advanced research. They address the latest scientific and industrial results and developments as well as future trends in the field of System-on-Chip (SoC) Design.
Now in a thoroughly revised second edition, this practical practitioner guide provides a comprehensive overview of the SoC design process. It explains end-to-end system on chip (SoC) design processes and includes updated coverage of design methodology, the design environment, EDA tool flow, design decisions, choice of design intellectual property (IP) cores, sign-off procedures, and design infrastructure requirements. The second edition provides new information on SOC trends and updated design cases. Coverage also includes critical advanced guidance on the latest UPF-based low power design flow, challenges of deep submicron technologies, and 3D design fundamentals, which will prepare the readers for the challenges of working at the nanotechnology scale. A Practical Approach to VLSI System on Chip (SoC) Design: A Comprehensive Guide, Second Edition provides engineers who aspire to become VLSI designers with all the necessary information and details of EDA tools. It will be a valuable professional reference for those working on VLSI design and verification portfolios in complex SoC designs
This book contains extended and revised versions of the best papers presented during the fourteenth IFIP TC 10/WG 10.5 International Conference on Very Large Scale Integration. This conference provides a forum to exchange ideas and show industrial and academic research results in microelectronics design. The current trend toward increasing chip integration and technology process advancements brings about stimulating new challenges both at the physical and system-design levels.
This book contains extended and revised versions of the best papers presented at the 26th IFIP WG 10.5/IEEE International Conference on Very Large Scale Integration, VLSI-SoC 2018, held in Verona, Italy, in October 2018. The 13 full papers included in this volume were carefully reviewed and selected from the 27 papers (out of 106 submissions) presented at the conference. The papers discuss the latest academic and industrial results and developments as well as future trends in the field of System-on-Chip (SoC) design, considering the challenges of nano-scale, state-of-the-art and emerging manufacturing technologies. In particular they address cutting-edge research fields like heterogeneous, neuromorphic and brain-inspired, biologically-inspired, approximate computing systems.
With the rapid advances in technology, the conventional academic and research departments of Electronics engineering, Electrical Engineering, Computer Science, Instrumentation Engineering over the globe are forced to come together and update their curriculum with few common interdisciplinary courses in order to come out with the engineers and researchers with muli-dimensional capabilities. The gr- ing perception of the ‘Hardware becoming Soft’ and ‘Software becoming Hard’ with the emergence of the FPGAs has made its impact on both the hardware and software professionals to change their mindset of working in narrow domains. An interdisciplinary field where ‘Hardware meets the Software’ for undertaking se- ingly unfeasible tasks is System on Chip (SoC) which has become the basic pl- form of modern electronic appliances. If it wasn’t for SoCs, we wouldn’t be driving our car with foresight of the traffic congestion before hand using GPS. Without the omnipresence of the SoCs in our every walks of life, the society is wouldn’t have evidenced the rich benefits of the convergence of the technologies such as audio, video, mobile, IPTV just to name a few. The growing expectations of the consumers have placed the field of SoC design at the heart of at variance trends. On one hand there are challenges owing to design complexities with the emergence of the new processors, RTOS, software protocol stacks, buses, while the brutal forces of deep submicron effects such as crosstalk, electromigration, timing closures are challe- ing the design metrics.
This book contains extended and revised versions of the best papers presented at the 19th IFIP WG 10.5/IEEE International Conference on Very Large Scale Integration, VLSI-SoC 2011, held in Hong Kong, China, in October 2011. The 10 papers included in the book were carefully reviewed and selected from the 45 full papers and 16 special session papers presented at the conference. The papers cover a wide range of topics in VLSI technology and advanced research. They address the current trend toward increasing chip integration and technology process advancements bringing about stimulating new challenges both at the physical and system-design levels, as well as in the test of theses systems.
This book pioneers the field of gain-cell embedded DRAM (GC-eDRAM) design for low-power VLSI systems-on-chip (SoCs). Novel GC-eDRAMs are specifically designed and optimized for a range of low-power VLSI SoCs, ranging from ultra-low power to power-aware high-performance applications. After a detailed review of prior-art GC-eDRAMs, an analytical retention time distribution model is introduced and validated by silicon measurements, which is key for low-power GC-eDRAM design. The book then investigates supply voltage scaling and near-threshold voltage (NTV) operation of a conventional gain cell (GC), before presenting novel GC circuit and assist techniques for NTV operation, including a 3-transistor full transmission-gate write port, reverse body biasing (RBB), and a replica technique for optimum refresh timing. Next, conventional GC bitcells are evaluated under aggressive technology and voltage scaling (down to the subthreshold domain), before novel bitcells for aggressively scaled CMOS nodes and soft-error tolerance as presented, including a 4-transistor GC with partial internal feedback and a 4-transistor GC with built-in redundancy.