Download Free Visual Computing For Medicine Book in PDF and EPUB Free Download. You can read online Visual Computing For Medicine and write the review.

Visual Computing for Medicine, Second Edition, offers cutting-edge visualization techniques and their applications in medical diagnosis, education, and treatment. The book includes algorithms, applications, and ideas on achieving reliability of results and clinical evaluation of the techniques covered. Preim and Botha illustrate visualization techniques from research, but also cover the information required to solve practical clinical problems. They base the book on several years of combined teaching and research experience. This new edition includes six new chapters on treatment planning, guidance and training; an updated appendix on software support for visual computing for medicine; and a new global structure that better classifies and explains the major lines of work in the field. - Complete guide to visual computing in medicine, fully revamped and updated with new developments in the field - Illustrated in full color - Includes a companion website offering additional content for professors, source code, algorithms, tutorials, videos, exercises, lessons, and more
Visualization in Medicine is the first book on visualization and its application to problems in medical diagnosis, education, and treatment. The book describes the algorithms, the applications and their validation (how reliable are the results?), and the clinical evaluation of the applications (are the techniques useful?). It discusses visualization techniques from research literature as well as the compromises required to solve practical clinical problems. The book covers image acquisition, image analysis, and interaction techniques designed to explore and analyze the data. The final chapter shows how visualization is used for planning liver surgery, one of the most demanding surgical disciplines. The book is based on several years of the authors' teaching and research experience. Both authors have initiated and lead a variety of interdisciplinary projects involving computer scientists and medical doctors, primarily radiologists and surgeons.* A core field of visualization and graphics missing a dedicated book until now* Written by pioneers in the field and illustrated in full color* Covers theory as well as practice
Handbook of Medical Image Computing and Computer Assisted Intervention presents important advanced methods and state-of-the art research in medical image computing and computer assisted intervention, providing a comprehensive reference on current technical approaches and solutions, while also offering proven algorithms for a variety of essential medical imaging applications. This book is written primarily for university researchers, graduate students and professional practitioners (assuming an elementary level of linear algebra, probability and statistics, and signal processing) working on medical image computing and computer assisted intervention. - Presents the key research challenges in medical image computing and computer-assisted intervention - Written by leading authorities of the Medical Image Computing and Computer Assisted Intervention (MICCAI) Society - Contains state-of-the-art technical approaches to key challenges - Demonstrates proven algorithms for a whole range of essential medical imaging applications - Includes source codes for use in a plug-and-play manner - Embraces future directions in the fields of medical image computing and computer-assisted intervention
The major progress in computer vision allows us to make extensive use of medical imaging data to provide us better diagnosis, treatment and predication of diseases. Computer vision can exploit texture, shape, contour and prior knowledge along with contextual information from image sequence and provide 3D and 4D information that helps with better human understanding. Many powerful tools have been available through image segmentation, machine learning, pattern classification, tracking, reconstruction to bring much needed quantitative information not easily available by trained human specialists. The aim of the book is for both medical imaging professionals to acquire and interpret the data, and computer vision professionals to provide enhanced medical information by using computer vision techniques. The final objective is to benefit the patients without adding to the already high medical costs.
Color Theory and Modeling for Computer Graphics, Visualization, and Multimedia Applications deals with color vision and visual computing. This book provides an overview of the human visual system with an emphasis on color vision and perception. The book then goes on to discuss how human color vision and perception are applied in several applications using computer-generated displays, such as computer graphics and information and data visualization. Color Theory and Modeling for Computer Graphics, Visualization, and Multimedia Applications is suitable as a secondary text for a graduate-level course on computer graphics, computer imaging, or multimedia computing and as a reference for researchers and practitioners developing computer graphics and multimedia applications.
This text provides an introduction to computational aspects of early vision, in particular, color, stereo, and visual navigation. It integrates approaches from psychophysics and quantitative neurobiology, as well as theories and algorithms from machine vision and photogrammetry. When presenting mathematical material, it uses detailed verbal descriptions and illustrations to clarify complex points. The text is suitable for upper-level students in neuroscience, biology, and psychology who have basic mathematical skills and are interested in studying the mathematical modeling of perception.
Virtual Reality has the potential to provide descriptive and practical information for medical training and therapy while relieving the patient or the physician. Multimodal interactions between the user and the virtual environment facilitate the generation of high-fidelity sensory impressions, by using not only visual and auditory, but also kinesthetic, tactile, and even olfactory feedback modalities. On the basis of the existing physiological constraints, Virtual Reality in Medicine derives the technical requirements and design principles of multimodal input devices, displays, and rendering techniques. Resulting from a course taught by the authors, Virtual Reality in Medicine presents examples for surgical training, intra-operative augmentation, and rehabilitation that are already in use as well as those currently in development. It is well suited as introductory material for engineering and computer science students, as well as researchers who want to learn more about basic technologies in the area of virtual reality applied to medicine. It also provides a broad overview to non-engineering students as well as clinical users, who desire to learn more about the current state of the art and future applications of this technology.
"Illustrated with classical works of art, images from vision science, and computer generated tableaux, Visual Computing is a celebration of an amazing new field."--BOOK JACKET.
Augmented reality (AR) is transforming how we work, learn, play and connect with the world, and is now being introduced to the field of medicine, where it is revolutionising healthcare as pioneering virtual elements are being added to real images to provide a more compelling and intuitive view during procedures. This book, which had its beginnings at the AE-CAI: Augmented Environments for Computer-Assisted Interventions MICCAI Workshop in Munich in 2015, is the first to review the area of mixed and augmented reality in medicine. Covering a range of examples of the use of AR in medicine, it explores its relevance to minimally-invasive interventions, how it can improve the accuracy of a procedure and reduce procedure time, and how it may be employed to reduce radiation risks. It also discusses how AR can be an effective tool in the education of physicians, medical students, nurses and other health professionals. Features: An ideal practical guide for medical professionals and students looking to understand the implementation, applications, and future of AR Contains the latest developments and technologies in this innovative field Edited by highly respected pioneers in the field, who have been immersed in AR as well as virtual reality and image-guided surgery since their inception, with chapter contributions from subject area specialists working with AR
Medical Image Analysis presents practical knowledge on medical image computing and analysis as written by top educators and experts. This text is a modern, practical, self-contained reference that conveys a mix of fundamental methodological concepts within different medical domains. Sections cover core representations and properties of digital images and image enhancement techniques, advanced image computing methods (including segmentation, registration, motion and shape analysis), machine learning, how medical image computing (MIC) is used in clinical and medical research, and how to identify alternative strategies and employ software tools to solve typical problems in MIC. - An authoritative presentation of key concepts and methods from experts in the field - Sections clearly explaining key methodological principles within relevant medical applications - Self-contained chapters enable the text to be used on courses with differing structures - A representative selection of modern topics and techniques in medical image computing - Focus on medical image computing as an enabling technology to tackle unmet clinical needs - Presentation of traditional and machine learning approaches to medical image computing