Download Free Video 3d Capture Traitement Et Diffusion Book in PDF and EPUB Free Download. You can read online Video 3d Capture Traitement Et Diffusion and write the review.

Les médias 3D relief, leur capture, leur retransmission en relief, possiblement en direct, sont aujourd’hui disponibles et portent l’évolution attendue pour la télévision et l’Internet. Ces technologies (« télévision 3D », « free viewpoint TV » ou « Vidéo 3D »), impactent toute la chaîne audiovisuelle : · les techniques d'acquisition relief sont plus variées · les scènes sont représentées par des structures numériques plus ou moins informatives : vidéos multi-vues sans/avec profondeur, modèles 3D · la reconstruction extrait lesdites représentations des vidéos multi-vues, · leur compression facilite la diffusion des médias, · l'affichage (auto-)stéréoscopique, avec/sans adaptation/enrichissement et/ou synthèse de vues intermédiaires, permet l’expérience visuelle immersive ciblée. La vidéo 3D recouvre donc de multiples facettes. Visant à donner aux étudiants une vision d’ensemble du sujet et aux chercheurs un texte de référence actuel aussi complet que possible, cet ouvrage en présente les principaux développements relevant de domaines variés : mathématiques appliquées, vision par ordinateur, informatique graphique, réalité virtuelle, psychophysique et physiologie de la vision humaine...
Virtual and Augmented Reality have existed for a long time but were stuck to the research world or to some large manufacturing companies. With the appearance of low-cost devices, it is expected a number of new applications, including for the general audience. This book aims at making a statement about those novelties as well as distinguishing them from the complexes challenges they raise by proposing real use cases, replacing those recent evolutions through the VR/AR dynamic and by providing some perspective for the years to come.
Virtual and Augmented Reality have existed for a long time but were stuck to the research world or to some large manufacturing companies. With the appearance of low-cost devices, it is expected a number of new applications, including for the general audience. This book aims at making a statement about those novelties as well as distinguishing them from the complexes challenges they raise by proposing real use cases, replacing those recent evolutions through the VR/AR dynamic and by providing some perspective for the years to come.
At the time of rapid technological progress and uptake of High Dynamic Range (HDR) video content in numerous sectors, this book provides an overview of the key supporting technologies, discusses the effectiveness of various techniques, reviews the initial standardization efforts and explores new research directions in all aspects involved in HDR video systems. Topics addressed include content acquisition and production, tone mapping and inverse tone mapping operators, coding, quality of experience, and display technologies. This book also explores a number of applications using HDR video technologies in the automotive industry, medical imaging, spacecraft imaging, driving simulation and watermarking. By covering general to advanced topics, along with a broad and deep analysis, this book is suitable for both the researcher new or familiar to the area. With this book the reader will: - Gain a broad understanding of all the elements in the HDR video processing chain - Learn the most recent results of ongoing research - Understand the challenges and perspectives for HDR video technologies - Covers a broad range of topics encompassing the whole processing chain in HDR video systems, from acquisition to display - Provides a comprehensive overview of this fast emerging topic - Presents upcoming applications taking advantages of HDR
Accuracy requirements in radiation oncology have been defined in multiple publications; however, these have been based on differing radiation technologies. In the meantime, the uncertainties in radiation dosimetry reference standards have been reduced and more detailed patient outcome data are available. No comprehensive literature on accuracy and uncertainties in radiotherapy has been published so far. The IAEA has therefore developed a new international consensus document on accuracy requirements and uncertainties in radiation therapy, to promote safer and more effective patient treatments. This publication addresses accuracy and uncertainty issues related to the vast majority of radiotherapy departments including both external beam radiotherapy and brachytherapy. It covers clinical, radiobiological, dosimetric, technical and physical aspects.
While 3D vision has existed for many years, the use of 3D cameras and video-based modeling by the film industry has induced an explosion of interest for 3D acquisition technology, 3D content and 3D displays. As such, 3D video has become one of the new technology trends of this century. The chapters in this book cover a large spectrum of areas connected to 3D video, which are presented both theoretically and technologically, while taking into account both physiological and perceptual aspects. Stepping away from traditional 3D vision, the authors, all currently involved in these areas, provide the necessary elements for understanding the underlying computer-based science of these technologies. They consider applications and perspectives previously unexplored due to technological limitations. This book guides the reader through the production process of 3D videos; from acquisition, through data treatment and representation, to 3D diffusion. Several types of camera systems are considered (multiscopic or multiview) which lead to different acquisition, modeling and storage-rendering solutions. The application of these systems is also discussed to illustrate varying performance benefits, making this book suitable for students, academics, and also those involved in the film industry.
Geomatics is a neologism, the use of which is becoming increasingly widespread, even if it is not still universally accepted. It includes several disciplines and te- niques for the study of the Earth’s surface and its environments, and computer science plays a decisive role. A more meaningful and appropriate expression is G- spatial Information or GeoInformation. Geo-spatial Information embeds topography in its more modern forms (measurements with electronic instrumentation, sophisticated techniques of data analysis and network compensation, global satellite positioning techniques, laser scanning, etc.), analytical and digital photogrammetry, satellite and airborne remote sensing, numerical cartography, geographical information systems, decision support systems, WebGIS, etc. These specialized elds are intimately interrelated in terms of both the basic science and the results pursued: rigid separation does not allow us to discover several common aspects and the fundamental importance assumed in a search for solutions in the complex survey context. The objective pursued by Mario A. Gomarasca, one that is only apparently modest, is to publish an integrated text on the surveying theme, containing simple and comprehensible concepts relevant to experts in Geo-spatial Information and/or speci cally in one of the disciplines that compose it. At the same time, the book is rigorous and synthetic, describing with precision the main instruments and methods connected to the multiple techniques available today.
As virtual reality expands from the imaginary worlds of science fiction and pervades every corner of everyday life, it is becoming increasingly important for students and professionals alike to understand the diverse aspects of this technology. This book aims to provide a comprehensive guide to the theoretical and practical elements of virtual reality, from the mathematical and technological foundations of virtual worlds to the human factors and the applications that enrich our lives: in the fields of medicine, entertainment, education and others. After providing a brief introduction to the topic, the book describes the kinematic and dynamic mathematical models of virtual worlds. It explores the many ways a computer can track and interpret human movement, then progresses through the modalities that make up a virtual world: visual, acoustic and haptic. It explores the interaction between the actual and virtual environments, as well as design principles of the latter. The book closes with an examination of different applications, focusing on augmented reality as a special case. Though the content is primarily VR-related, it is also relevant for many other fields.