Download Free Vector Optimization Book in PDF and EPUB Free Download. You can read online Vector Optimization and write the review.

In vector optimization one investigates optimal elements such as min imal, strongly minimal, properly minimal or weakly minimal elements of a nonempty subset of a partially ordered linear space. The prob lem of determining at least one of these optimal elements, if they exist at all, is also called a vector optimization problem. Problems of this type can be found not only in mathematics but also in engineer ing and economics. Vector optimization problems arise, for exam ple, in functional analysis (the Hahn-Banach theorem, the lemma of Bishop-Phelps, Ekeland's variational principle), multiobjective pro gramming, multi-criteria decision making, statistics (Bayes solutions, theory of tests, minimal covariance matrices), approximation theory (location theory, simultaneous approximation, solution of boundary value problems) and cooperative game theory (cooperative n player differential games and, as a special case, optimal control problems). In the last decade vector optimization has been extended to problems with set-valued maps. This new field of research, called set optimiza tion, seems to have important applications to variational inequalities and optimization problems with multivalued data. The roots of vector optimization go back to F. Y. Edgeworth (1881) and V. Pareto (1896) who has already given the definition of the standard optimality concept in multiobjective optimization. But in mathematics this branch of optimization has started with the leg endary paper of H. W. Kuhn and A. W. Tucker (1951). Since about v Vl Preface the end of the 60's research is intensively made in vector optimization.
These notes grew out of a series of lectures given by the author at the Univer sity of Budapest during 1985-1986. Additional results have been included which were obtained while the author was at the University of Erlangen-Niirnberg under a grant of the Alexander von Humboldt Foundation. Vector optimization has two main sources coming from economic equilibrium and welfare theories of Edgeworth (1881) and Pareto (1906) and from mathemat ical backgrounds of ordered spaces of Cantor (1897) and Hausdorff (1906). Later, game theory of Borel (1921) and von Neumann (1926) and production theory of Koopmans (1951) have also contributed to this area. However, only in the fifties, after the publication of Kuhn-Tucker's paper (1951) on the necessary and sufficient conditions for efficiency, and of Deubreu's paper (1954) on valuation equilibrium and Pareto optimum, has vector optimization been recognized as a mathematical discipline. The stretching development of this field began later in the seventies and eighties. Today there are a number of books on vector optimization. Most of them are concerned with the methodology and the applications. Few of them offer a systematic study of the theoretical aspects. The aim of these notes is to pro vide a unified background of vector optimization,with the emphasis on nonconvex problems in infinite dimensional spaces ordered by convex cones. The notes are arranged into six chapters. The first chapter presents prelim inary material.
The theory of Vector Optimization is developed by a systematic usage of infimum and supremum. In order to get existence and appropriate properties of the infimum, the image space of the vector optimization problem is embedded into a larger space, which is a subset of the power set, in fact, the space of self-infimal sets. Based on this idea we establish solution concepts, existence and duality results and algorithms for the linear case. The main advantage of this approach is the high degree of analogy to corresponding results of Scalar Optimization. The concepts and results are used to explain and to improve practically relevant algorithms for linear vector optimization problems.
This book is devoted to vector or multiple criteria approaches in optimization. Topics covered include: vector optimization, vector variational inequalities, vector variational principles, vector minmax inequalities and vector equilibrium problems. In particular, problems with variable ordering relations and set-valued mappings are treated. The nonlinear scalarization method is extensively used throughout the book to deal with various vector-related problems. The results presented are original and should be interesting to researchers and graduates in applied mathematics and operations research. Readers will benefit from new methods and ideas for handling multiple criteria decision problems.
Engineers must make decisions regarding the distribution of expensive resources in a manner that will be economically beneficial. This problem can be realistically formulated and logically analyzed with optimization theory. This book shows engineers how to use optimization theory to solve complex problems. Unifies the large field of optimization with a few geometric principles. Covers functional analysis with a minimum of mathematics. Contains problems that relate to the applications in the book.
Focusing on the study of nonsmooth vector functions, this book presents a comprehensive account of the calculus of generalized Jacobian matrices and their applications to continuous nonsmooth optimization problems, as well as variational inequalities in finite dimensions. The treatment is motivated by a desire to expose an elementary approach to nonsmooth calculus, using a set of matrices to replace the nonexistent Jacobian matrix of a continuous vector function.
This first volume presents the theory and methods of solving vector optimization problems, using initial definitions that include axioms and the optimality principle. This book proves, mathematically, that the result it presents for the solution of the vector (multi-criteria) problem is the optimal outcome, and, as such, solves the problem of vector optimization for the first time. It shows that applied methods of solving vector optimization problems can be used by researchers in modeling and simulating the development of economic systems and technical (engineering) systems.
This volume summarizes and synthesizes an aspect of research work that has been done in the area of Generalized Convexity over the past few decades. Specifically, the book focuses on V-invex functions in vector optimization that have grown out of the work of Jeyakumar and Mond in the 1990’s. The authors integrate related research into the book and demonstrate the wide context from which the area has grown and continues to grow.
Set-valued optimization is a vibrant and expanding branch of mathematics that deals with optimization problems where the objective map and/or the constraints maps are set-valued maps acting between certain spaces. Since set-valued maps subsumes single valued maps, set-valued optimization provides an important extension and unification of the scalar as well as the vector optimization problems. Therefore this relatively new discipline has justifiably attracted a great deal of attention in recent years. This book presents, in a unified framework, basic properties on ordering relations, solution concepts for set-valued optimization problems, a detailed description of convex set-valued maps, most recent developments in separation theorems, scalarization techniques, variational principles, tangent cones of first and higher order, sub-differential of set-valued maps, generalized derivatives of set-valued maps, sensitivity analysis, optimality conditions, duality and applications in economics among other things.
Support Vector Machines: Optimization Based Theory, Algorithms, and Extensions presents an accessible treatment of the two main components of support vector machines (SVMs)-classification problems and regression problems. The book emphasizes the close connection between optimization theory and SVMs since optimization is one of the pillars on which