Download Free Vector Calculus And Linear Algebra Book in PDF and EPUB Free Download. You can read online Vector Calculus And Linear Algebra and write the review.

This book covers vector calculus up to the integral theorems; linear algebra up to the spectral theorem; and harmonic analysis until the Dirichlet theorem on convergence of Fourier series with applications to partial differential equations. It also contains a unique introduction to proofs, while providing a solid foundation in understanding the proof techniques better.The book incorporates fundamentals from advanced calculus and linear algebra but it is still accessible to a rather general student audience.Students will find materials that are usually left out like differential forms in calculus, the Taylor theorem in arbitrary dimensions or the Jordan normal form in linear algebra, the convergence proof of Fourier series, and how to do calculus on discrete networks.The contents of this book were used to teach in a two-semester course at Harvard University during fall 2018 and spring 2019. For the last 30 years, Oliver Knill has taught calculus, linear algebra, probability theory and differential equations starting at ETH Zürich, moving onward to Caltech, and the University of Arizona, and ever since 2000, at Harvard.
Multivariable Mathematics combines linear algebra and multivariable mathematics in a rigorous approach. The material is integrated to emphasize the recurring theme of implicit versus explicit that persists in linear algebra and analysis. In the text, the author includes all of the standard computational material found in the usual linear algebra and multivariable calculus courses, and more, interweaving the material as effectively as possible, and also includes complete proofs. * Contains plenty of examples, clear proofs, and significant motivation for the crucial concepts. * Numerous exercises of varying levels of difficulty, both computational and more proof-oriented. * Exercises are arranged in order of increasing difficulty.
This textbook for the undergraduate vector calculus course presents a unified treatment of vector and geometric calculus. This is the printing of August 2022. The book is a sequel to the text Linear and Geometric Algebra by the same author. That text is a prerequisite for this one. Its web page is at faculty.luther.edu/ macdonal/laga. Linear algebra and vector calculus have provided the basic vocabulary of mathematics in dimensions greater than one for the past one hundred years. Just as geometric algebra generalizes linear algebra in powerful ways, geometric calculus generalizes vector calculus in powerful ways. Traditional vector calculus topics are covered, as they must be, since readers will encounter them in other texts and out in the world. Differential geometry is used today in many disciplines. A final chapter is devoted to it. Download the book's table of contents, preface, and index at the book's web site: faculty.luther.edu/ macdonal/vagc. From a review of Linear and Geometric Algebra: Alan Macdonald's text is an excellent resource if you are just beginning the study of geometric algebra and would like to learn or review traditional linear algebra in the process. The clarity and evenness of the writing, as well as the originality of presentation that is evident throughout this text, suggest that the author has been successful as a mathematics teacher in the undergraduate classroom. This carefully crafted text is ideal for anyone learning geometric algebra in relative isolation, which I suspect will be the case for many readers. -- Jeffrey Dunham, William R. Kenan Jr. Professor of Natural Sciences, Middlebury College
A groundbreaking introduction to vectors, matrices, and least squares for engineering applications, offering a wealth of practical examples.
This title is part of the Pearson Modern Classics series. Pearson Modern Classics are acclaimed titles at a value price. Please visit www.pearsonhighered.com/math-classics-series for a complete list of titles. Offering the most geometric presentation available, Linear Algebra with Applications, Fifth Edition emphasizes linear transformations as a unifying theme. This elegant textbook combines a user-friendly presentation with straightforward, lucid language to clarify and organize the techniques and applications of linear algebra. Exercises and examples make up the heart of the text, with abstract exposition kept to a minimum. Exercise sets are broad and varied and reflect the author's creativity and passion for this course. This revision reflects careful review and appropriate edits throughout, while preserving the order of topics of the previous edition.
This book uses elementary versions of modern methods found in sophisticated mathematics to discuss portions of "advanced calculus" in which the subtlety of the concepts and methods makes rigor difficult to attain at an elementary level.
This is an introductory textbook designed for undergraduate mathematics majors with an emphasis on abstraction and in particular, the concept of proofs in the setting of linear algebra. Typically such a student would have taken calculus, though the only prerequisite is suitable mathematical grounding. The purpose of this book is to bridge the gap between the more conceptual and computational oriented undergraduate classes to the more abstract oriented classes. The book begins with systems of linear equations and complex numbers, then relates these to the abstract notion of linear maps on finite-dimensional vector spaces, and covers diagonalization, eigenspaces, determinants, and the Spectral Theorem. Each chapter concludes with both proof-writing and computational exercises.
A readable introduction to the subject of calculus on arbitrary surfaces or manifolds. Accessible to readers with knowledge of basic calculus and linear algebra. Sections include series of problems to reinforce concepts.