Download Free Validation And Verification Of Knowledge Based Systems Book in PDF and EPUB Free Download. You can read online Validation And Verification Of Knowledge Based Systems and write the review.

Knowledge-based (KB) technology is being applied to complex problem-solving and critical tasks in many application domains. Concerns have naturally arisen as to the dependability of knowledge-based systems (KBS). As with any software, attention to quality and safety must be paid throughout development of a KBS and rigorous verification and validation (V&V) techniques must be employed. Research in V&V of KBS has emerged as a distinct field only in the last decade and is intended to address issues associated with quality and safety aspects of KBS and to credit such applications with the same degree of dependability as conventional applications. In recent years, V&V of KBS has been the topic of annual workshops associated with the main AI conferences, such as AAAI, IJACI and ECAI. Validation and Verification of Knowledge Based Systems contains a collection of papers, dealing with all aspects of KBS V&V, presented at the Fifth European Symposium on Verification and Validation of Knowledge Based Systems and Components (EUROVAV'99 - which was held in Oslo in the summer of 1999, and was sponsored by Det Norske Veritas and the British Computer Society's Specialist Group on Expert Systems (SGES).
The papers collected in the book were invited by the editors as tutorial courses or keynote speeches for the Fourth International Conference on Software Engineering and Knowledge Engineering. It was the editors' intention that this book should offer a wide coverage of the main topics involved with the specifications, prototyping, development and maintenance of software systems and knowledge-based systems. The main issues in the area of software engineering and knowledge engineering are addressed and for each analyzed topic the corresponding of state research is reported.
PLEASE PROVIDE COURSE INFORMATION PLEASE PROVIDE
The design of knowledge systems is finding myriad applications from corporate databases to general decision support in areas as diverse as engineering, manufacturing and other industrial processes, medicine, business, and economics. In engineering, for example, knowledge bases can be utilized for reliable electric power system operation. In medicine they support complex diagnoses, while in business they inform the process of strategic planning. Programmed securities trading and the defeat of chess champion Kasparov by IBM's Big Blue are two familiar examples of dedicated knowledge bases in combination with an expert system for decision-making.With volumes covering "Implementation," "Optimization," "Computer Techniques," and "Systems and Applications," this comprehensive set constitutes a unique reference source for students, practitioners, and researchers in computer science, engineering, and the broad range of applications areas for knowledge-based systems.
The book presents state of the art practices and research in the area of Knowledge Capture and Reuse in industry. This book demonstrates some of the successful applications of industrial knowledge management at the micro level. The Micro Knowledge Management (MicroKM) is about capture and reuse of knowledge at the operational, shopfloor and designer level. The readers will benefit from different frameworks, concepts and industrial case studies on knowledge capture and reuse. The book contains a number of invited papers from leading practitioners in the field and a small number of selected papers from active researchers. The book starts by providing the foundation for micro knowledge management through knowledge systematisation, analysing the nature of knowledge and by evaluating verification and validation technology for knowledge based system of frameworks for knowledge capture, reuse and development. A number integration are also provided. Web based framework for knowledge capture and delivery is becoming increasingly popular. Evolutionary computing is also used to automate design knowledge capture. The book demonstrates frameworks and techniques to capture knowledge from people, data and process and reuse the knowledge using an appropriate tool in the business. Therefore, the book bridges the gap between the theory and practice. The 'theory to practice' chapter discusses about virtual communities of practice, Web based approaches, case based reasoning and ontology driven systems for the knowledge management. Just-in-time knowledge delivery and support is becoming a very important tool for real-life applications.
Knowledge-based systems are increasingly found in a wide variety of settings and this handbook has been written to meet a specific need in their widening use. While there have been many successful applications of knowledge-based systems, some applications have failed because they never received the corrective feedback that evaluation provides for keeping development focused on the users' needs in their actual working environment. This handbook provides a conceptual framework and compendium of methods for performing evaluations of knowledge-based systems during their development. Its focus is on the users' and subject matter experts' evaluation of the usefulness of the system, and not on the developers' testing of the adequacy of the programming code. The handbook permits evaluators to systematically answer the following kinds of questions: Does the knowledge-based system meet the users' task requirements? Is the system easy to use? Is the knowledge base logically consistent? Does it meet the required level of expertise? Does the system improve performance? The authors have produced a handbook that will serve two audiences: a tool that can be used to create knowledge-based systems (practitioners, developers, and evaluators) and a framework that will stimulate more research in the area (academic researchers and students). To accomplish this, the handbook is built around a conceptual framework that integrates the different types of evaluations into the system of development process. The kinds of questions that can be answered, and the methods available for answering them, will change throughout the system development life cycle. And throughout this process, one needs to know what can be done, and what can't. It is this dichotomy that addresses needs in both the practitioner and academic research audiences.
Validation, Verification and Testing (VVT) are important and difficult to achieve for any software product--Knowledge-Based Systems (KBS) present particular problems, dealing as they do in probabilities, uncertainties and approximations. This collection of papers looks at current research and implementation issues; describes tools, techniques and validation and verification criteria; discusses particular projects; and includes a survey of developers.
Knowledge Based Systems (KBS) are systems that use artificial intelligence techniques in the problem solving process. This text is designed to develop an appreciation of KBS and their architecture and to help users understand a broad variety of knowledge based techniques for decision support and planning. It assumes basic computer science skills and a math background that includes set theory, relations, elementary probability, and introductory concepts of artificial intelligence. Each of the 12 chapters are designed to be modular providing instructors with the flexibility to model the book to their own course needs. Exercises are incorporated throughout the text to highlight certain aspects of the material being presented and to stimulate thought and discussion.
This collection of previously published papers brings together state-of-the-art developments in expert system testing. The volume is separated into five chapters on expert system validation, knowledge base verification, development and evaluation, case studies and tools, and general topics. The pape
If one were forced to use a single key word to describe the decade of the 1980's, a very prominent one would be "technology. " Leading the forefront of tech nology advancement were breakthroughs in electronics. Devices that were uncommon or unknown in 1980 became commonplace, and almost indispens able, by 1989. This trend has continued into the 1990's and it does not seem to be abating in any way. Microwave ovens, video recorders, telephone answer ing machines, compact disc players, computers, and a host of smaller or less sophisticated devices now appear in most households. The development of small and inexpensive computers, i. e. , personal computers, has placed computing resources within reach of many more people. In addition, many traditional, and largely mechanical devices, have been enhanced by electronics. For example, specialized microprocessors are combined with arrays of electronic sensors to control and monitor sophisticated engineering components in most new auto mobiles. In this and many other ways, we are touched by the new electronics in almost every aspect of our daily lives. Initially, personal computers were little more than toys. They contained only a small fraction of the computing power of their immediate ancestors, the mini computers and mainframe computers. However, rapid improvements in integ rated circuit design and chip manufacture produced regular reductions in size and cost of computer components. During the same time, processor speed and sophistication increased.