Download Free Vacuum Vapor Extraction Book in PDF and EPUB Free Download. You can read online Vacuum Vapor Extraction and write the review.

This manual provides practical guidance for the design and operation of soil vapor extraction (SVE) and bioventing (BV) systems. It is intended for use by engineers, geologists, hydrogeologists, and soil scientists, chemists, project managers, and others who possess a technical education and some design experience but only the broadest familiarity with SVE or BV systems.
This report provides an engineering analysis of, and status report on, selected enhancements for soil vapor extraction (SVE) treatment technologies. The report is intended to assist project managers considering an SVE treatment system by providing them with an up-to-date status of enhancement technologies; an evaluation of each technology's applicability to various site conditions; a presentation of cost and performance information; a list of vendors specializing in the technologies; a discussion of relative strengths and limitations of the technologies; recommendations to keep in mind when considering the enhancements; and a compilation of references. The performance of an SVE system depends on properties of both the contaminants and the soil. SVE is generally applicable to compounds with a vapor pressure of greater than 1 millimeter of mercury at 20EC and a Henry s Law constant of greater than 100 atmospheres per mole fraction. SVE is most effective at sites with relatively permeable contaminated soil and with saturated hydraulic conductivities of greater than 1 x 10 or 1 x 10 centimeter per second (cm/s). SVE by itself does not effectively remove contaminants -3 -2 in saturated soil. However, SVE can be used as an integral part of some treatment schemes that treat both groundwater and the overlying vadose zone. Enhancement technologies should be considered when contaminant or soil characteristics limit the effectiveness of SVE or when contaminants are present in saturated soil. The five enhancement technologies covered in this report are as follows and are described in the following subsections: * Air Sparging * Dual-phase Extraction * Directional Drilling * Pneumatic and Hydraulic Fracturing * Thermal Enhancement.
One of the most widely used techniques for treating soils contaminated with volatile organic compounds, soil vapor extraction (SVE) can also be applied to semi-volatile organic compounds (SVOCs) if the soil is heated, by applying electromagnetic energy in the radio frequency (FR) range, to increase the vapor pressure of the contaminants. Although RF-SVE systems used in previous field demonstrations have had varying degrees of success, questions remain concerning its viability and cost-effectiveness. Soil Vapor Extraction Using Radio Frequency Heating: Resource Manual and Technology Demonstration covers detailed scientific and engineering information that answers these questions. The book includes the necessary databases, equations, and example calculations for RF heating. The theoretical and practical information included will facilitate future testing of RF-SVE treatment of soils. Additionally, the book provides information for a full-scale engineering design of potential RF-SVE applications. The authors use this information to examine predicted performance, magnitude of costs, and modifications to the design that may decrease cost. Soil Vapor Extraction Using Radio Frequency Heating: Resource Manual and Technology Demonstration gives an economic analysis of this innovative technology and considers other possible applications for it. Features
In many cases, the application of in situ technologies evolved as a necessity from a cost perspective. However, the basic understanding of the mechanisms and theory behind these technologies was treated as a "black box." Although we have seen some tremendous successes in the application of remediation technologies over the past several years, we have also seen many cases in which a technology has been incorrectly or inappropriately applied. In most cases, this misapplication has been the result of a poor understanding of the basic concepts and mechanisms behind the technologies. Without proper understanding, the potential for misapplication of technologies remains a serious economic and technical threat.