Download Free Vaccine Delivery Technology Book in PDF and EPUB Free Download. You can read online Vaccine Delivery Technology and write the review.

This volume discusses the vaccine development process and the role delivery concepts contribute to a global goal of effective health outcomes. The chapters in this book cover a wide range of topics such as antigen discovery methods; genetic and protein antigen preparation; preparation of viral vaccines as VLPs; viral and non-viral gene delivery; needle-less or non-invasive delivery technology; vaccine storage; and vaccine administration and assessment. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics; lists of the necessary materials and reagents; step-by-step, readily reproducible laboratory protocols; and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and practical, Vaccine Delivery Technology: Methods and Protocols is a valuable resource for both novice and expert researchers, in and outside the field, who would like to gain insight into the impactful field of vaccines. Chapter 7 is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
This book provides a comprehensive overview of how use of micro- and nanotechnology (MNT) has allowed major new advance in vaccine development research, and the challenges that immunologists face in making further progress. MNT allows the creation of particles that exploit the inherent ability of the human immune system to recognize small particles such as viruses and toxins. In combination with minimal protective epitope design, this permits the creation of immunogenic particles that stimulate a response against the targeted pathogen. The finely tuned response of the human immune system to small particles makes it unsurprising that many of the lead adjuvants and vaccine delivery systems currently under investigation are based on nanoparticles. - Provides a comprehensive and unparalleled overview of the role of micro- and nanotechnology in vaccine development - Allows researchers to quickly familiarize themselves with the broad spectrum of vaccines and how micro- and nanotechnologies are applied to their development - Includes a combination of overview chapters setting out general principles, and focused content dealing with specific vaccines, making it useful to readers from a variety of disciplines
Immunopotentiators in Modern Vaccines provides an in-depth insight and overview of a number of most promising immunopotentiators in modern vaccines. In contrast to existing books on the subject it provides recent data on the critical mechanisms governing the activity of vaccine adjuvants and delivery systems. Knowledge of immunological pathways and scenarios of the cells and molecules involved is described and depicted in comprehensive illustrations. - Contributions from leading international authorities in the field - Well-illustrated, informative figures present the interactions between immunopotentiators and the host immune system - Each chapter lists advantages and potential hurdles for achieving a practical application for the specific immunopentiator
Formulation, Development and Manufacturing of Vaccines: The Practical Aspects provides an industry perspective on vaccine product development and manufacture that covers their formulation development, manufacture and delivery/in-use considerations of vaccine production. With the increasing complexity of vaccine products in development, there is a need for a comprehensive review of the current state of the industry and its challenges. While formulation scientists working in biotherapeutic development may be familiar with proteins, vaccines present unique challenges, including the wide range of vaccine components that may comprise proteins, polysaccharides, protein-polysaccharide conjugates, adjuvants, etc. and the varying stability and behavior of solution- and suspension-based systems. This book is an essential resource for formulation scientists, researchers in vaccine development throughout medical and life sciences, and advanced students. Includes formulation considerations for various vaccine types, including proteins, polysaccharides, conjugates and live vaccines Considers process development for solution, suspension and lyophilized products Explores the future potential of vaccines, including multi-component vaccines and novel delivery mechanisms/devices
Recent years have seen the development of novel technologies that use nanoparticles and microparticles to deliver vaccines by the oral and microneedle-based transdermal route of administration. These new technologies enable the formulation of vaccine particles containing vaccine antigens, without loss of their biological activity during the formula
Updated to reflect the wide spectrum of economic, regulatory, financial, ethical, and political issues impacting vaccinology in industrialized and developing nations, the Third Edition pinpoints relevant breakthroughs, trends, and advances in vaccinology and immunization science. The book highlights the most influential developments in vaccine safety, regulation, manufacture, and utilization, as well as clinical trials standardization and monitoring. With contributions from a renowned team of specialists and researchers, this reference tracks the technologies, experimental studies, and international programs that will revolutionize and transform the world of vaccinology in the 21st century.
This book presents a detailed overview of the development of new viral vector-based vaccines before discussing two major applications: preventive vaccines for infectious diseases and therapeutic cancer vaccines. Viral vector-based vaccines hold a great potential for development into successful pharmaceutical products and several examples at the advanced pre-clinical or clinical stage are presented. Nevertheless, the most efforts were focused on novel and very innovative technologies for new generation of vector-based vaccines. Furthermore, specific topics such as delivery and adjuvant and protection strategies for cell-mediated-based vaccines are presented. Given its scope, the book is a “must read” for all those involved in vaccine development, both in academia and industrial vaccine development.
Vaccines have made it possible to eradicate the scourge of smallpox, promise the same for polio, and have profoundly reduced the threat posed by other diseases such as whooping cough, measles, and meningitis. What is next? There are many pathogens, autoimmune diseases, and cancers that may be promising targets for vaccine research and development. This volume provides an analytic framework and quantitative model for evaluating disease conditions that can be applied by those setting priorities for vaccine development over the coming decades. The committee describes an approach for comparing potential new vaccines based on their impact on morbidity and mortality and on the costs of both health care and vaccine development. The book examines: Lessons to be learned from the polio experience. Scientific advances that set the stage for new vaccines. Factors that affect how vaccines are used in the population. Value judgments and ethical questions raised by comparison of health needs and benefits. The committee provides a way to compare different forms of illness and set vaccine priorities without assigning a monetary value to lives. Their recommendations will be important to anyone involved in science policy and public health planning: policymakers, regulators, health care providers, vaccine manufacturers, and researchers.
Provides comprehensive coverage of microneedles for delivering and monitoring patient drugs and vaccines Microneedles are an incredibly active research area and have the potential to revolutionize the way many medicines and vaccines are delivered. This comprehensive research book covers the major aspects relating to the use of microneedle arrays in enhancing both transdermal and intradermal drug delivery and provides a sound background to the use of microneedle arrays in enhanced delivery applications. Beginning with a history of the field and the various methods employed to produce microneedles from different materials, Microneedles for Drug and Vaccine Delivery and Patient Monitoring discusses the penetration of the stratum corneum by microneedles and the importance of application method and force and microneedle geometry (height, shape, inter-needle spacing). Transdermal and intradermal delivery research using microneedles is comprehensively and critically reviewed, focusing on the outcomes of in vivo animal and human studies. The book describes the important topics of safety and patient acceptability studies carried out to date. It also covers in detail the growing area for microneedle use in the monitoring of interstitial fluid contents. Finally, it reviews translational and regulatory developments in the microneedles field and describes the work ongoing in industry. The only book currently available on microneedles Filled with tables, graphs, and black and white images (photographs, micrographs) Authored by four experts in pharmaceutics Microneedles for Drug and Vaccine Delivery and Patient Monitoring is an ideal source for researchers in industry and academia working on drug delivery and transdermal delivery in particular, as well as for advanced students in pharmacy and pharmaceutical sciences.