Download Free Using Noise To Characterize Vision Book in PDF and EPUB Free Download. You can read online Using Noise To Characterize Vision and write the review.

Noise has been widely used to investigate the processing properties of various visual functions (e.g. detection, discrimination, attention, perceptual learning, averaging, crowding, face recognition), in various populations (e.g. older adults, amblyopes, migrainers, dyslexic children), using noise along various dimensions (e.g. pixel noise, orientation jitter, contrast jitter). The reason to use external noise is generally not to characterize visual processing in external noise per se, but rather to reveal how vision works in ordinary conditions when performance is limited by our intrinsic noise rather than externally added noise. For instance, reverse correlation aims at identifying the relevant information to perform a given task in noiseless conditions and measuring contrast thresholds in various noise levels can be used to understand the impact of intrinsic noise that limits sensitivity to noiseless stimuli. Why use noise? Since Fechner named it, psychophysics has always emphasized the systematic investigation of conditions that break vision. External noise raises threshold hugely and selectively. In hearing, Fletcher used noise in his famous critical-band experiments to reveal frequency-selective channels in hearing. Critical bands have been found in vision too. More generally, the big reliable effects of noise give important clues to how the system works. And simple models have been proposed to account for the effects of visual noise. As noise has been more widely used, questions have been raised about the simplifying assumptions that link the processing properties in noiseless conditions to measurements in external noise. For instance, it is usually assumed that the processing strategy (or mechanism) used to perform a task and its processing properties (e.g. filter tuning) are unaffected by the addition of external noise. Some have suggested that the processing properties could change with the addition of external noise (e.g. change in filter tuning or more lateral masking in noise), which would need to be considered before drawing conclusions about the processing properties in noiseless condition. Others have suggested that different processing properties (or mechanisms) could be solicited in low and high noise conditions, complicating the characterization of processing properties in noiseless condition based on processing properties identified in noise conditions. The current Research Topic probes further into what the effects of visual noise tell us about vision in ordinary conditions. Our Editorial gives an overview of the articles in this special issue.
This book covers in detail the entire workflow for quantitative seismic interpretation of subsurface modeling and characterization. It focusses on each step of the geo-modeling workflow starting from data preconditioning and wavelet extraction, which is the basis for the reservoir geophysics described and introduced in the following chapters. This book allows the reader to get a comprehensive insight of the most common and advanced workflows. It aims at graduate students related to energy (hydrocarbons), CO2 geological storage, and near surface characterization as well as professionals in these industries. The reader benefits from the strong and coherent theoretical background of the book, which is accompanied with real case examples.
This edited volume addresses a subject which has been discussed inten sively in the computer vision community for several years. Performance characterization and evaluation of computer vision algorithms are of key importance, particularly with respect to the configuration of reliable and ro bust computer vision systems as well as the dissemination of reconfigurable systems in novel application domains. Although a plethora of literature on this subject is available for certain' areas of computer vision, the re search community still faces a lack of a well-grounded, generally accepted, and--eventually-standardized methods. The range of fundamental problems encoIl!passes the value of synthetic images in experimental computer vision, the selection of a representative set of real images related to specific domains and tasks, the definition of ground truth given different tasks and applications, the design of experimental test beds, the analysis of algorithms with respect to general characteristics such as complexity, resource consumption, convergence, stability, or range of admissible input data, the definition and analysis of performance measures for classes of algorithms, the role of statistics-based performance measures, the generation of data sheets with performance measures of algorithms sup porting the system engineer in his configuration problem, and the validity of model assumptions for specific applications of computer vision.
Mature sciences have been long been characterized in terms of the “successfulness”, “reliability” or “trustworthiness” of their theoretical, experimental or technical accomplishments. Today many philosophers of science talk of “robustness”, often without specifying in a precise way the meaning of this term. This lack of clarity is the cause of frequent misunderstandings, since all these notions, and that of robustness in particular, are connected to fundamental issues, which concern nothing less than the very nature of science and its specificity with respect to other human practices, the nature of rationality and of scientific progress; and science’s claim to be a truth-conducive activity. This book offers for the first time a comprehensive analysis of the problem of robustness, and in general, that of the reliability of science, based on several detailed case studies and on philosophical essays inspired by the so-called practical turn in philosophy of science.
This volume details the latest technology in treating eye injuries and infections. It provides insight into the most up-to-date and established treatment options. The volume focuses on what can currently be achieved with a variety of ocular prostheses as well as what the future holds. Coverage reviews issues such as intraocular lens implants, biocompatibility of materials, retinal implants, testing models, and software designs.
This book constitutes the refereed post-conference proceedings of the 21st Iberoamerican Congress on Pattern Recognition, CIARP 2016, held in Lima, Peru, in November 2016. The 69 papers presented were carefully reviewed and selected from 131 submissions. The papers feature research results in the areas of pattern recognition, biometrics, image processing, computer vision, speech recognition, and remote sensing. They constitute theoretical as well as applied contributions in many fields related to the main topics of the conference.
Field theory, relying on the concept of continuous space and time while confronted with the quantum physical nature of observable quantities, still has some fundamental challenges to face. One such challenge is to understand the emergence of complexity in the behavior of interacting elementary fields, including among other things nontrivial phase structures of elementary matter at high energy density or an atypical emergence of statistical properties, e.g., when an apparent temperature is proportional to a constant acceleration in a homogeneous gravitational field. Most modern textbooks on thermal field theory are mainly concerned with how the field theory formalism should be used if a finite temperature is given. In contrast, this short primer explores how the phenomenon of temperature emerges physically for elementary fields - inquiring about the underlying kinetic field theory and the way energy fluctuations and other noise should be handled - and it investigates whether and how this harmonizes with traditional field theory concepts like spectral evolution, the Keldysh formalism, and phase transitions.
Welcome to the proceedings of the 8th European Conference on Computer - sion! Following a very successful ECCV 2002, the response to our call for papers was almost equally strong – 555 papers were submitted. We accepted 41 papers for oral and 149 papers for poster presentation. Several innovations were introduced into the review process. First, the n- ber of program committee members was increased to reduce their review load. We managed to assign to program committee members no more than 12 papers. Second, we adopted a paper ranking system. Program committee members were asked to rank all the papers assigned to them, even those that were reviewed by additional reviewers. Third, we allowed authors to respond to the reviews consolidated in a discussion involving the area chair and the reviewers. Fourth, thereports,thereviews,andtheresponsesweremadeavailabletotheauthorsas well as to the program committee members. Our aim was to provide the authors with maximal feedback and to let the program committee members know how authors reacted to their reviews and how their reviews were or were not re?ected in the ?nal decision. Finally, we reduced the length of reviewed papers from 15 to 12 pages. ThepreparationofECCV2004wentsmoothlythankstothee?ortsofthe- ganizing committee, the area chairs, the program committee, and the reviewers. We are indebted to Anders Heyden, Mads Nielsen, and Henrik J. Nielsen for passing on ECCV traditions and to Dominique Asselineau from ENST/TSI who kindly provided his GestRFIA conference software. We thank Jan-Olof Eklundh and Andrew Zisserman for encouraging us to organize ECCV 2004 in Prague.
Neurology of Vision and Visual Disorders, Volume 178 in the Handbooks of Neurology series provides comprehensive summaries of recent research on the brain and nervous system. This volume reviews alterations in vision that stem from the retina to the cortex. Coverage includes content on vision and driving derived from the large amount of time devoted in clinics to determining who is safe to drive, along with research on the interplay between visual loss, attention and strategic compensations that may determine driving suitability. The title concludes with vision therapies and the evidence behind these approaches. Each chapter is co-written by a basic scientist collaborating with a clinician to provide a solid underpinning of the mechanisms behind the clinical syndromes. - Reviews the neurological underpinnings of visual perception disorders - Encompasses the cortex to the retina - Covers functional organization, electrophysiology and subcortical visual pathways - Discusses assessment, diagnosis and management of visual perception disorders - Includes international experts from Australia, Canada, Denmark, Germany, Singapore, and the UK and US