Download Free Use Of Plant Growth Regulators And Gibberellins In Horticulture Book in PDF and EPUB Free Download. You can read online Use Of Plant Growth Regulators And Gibberellins In Horticulture and write the review.

As agriculture becomes more mechanized and science increases the possibilities for using inputs to enhance production, the role of PGRs becomes more vital. Plant Growth Regulators in Agriculture and Horticulture provides agriculture professionals and researchers with the information needed to effectively tap these versatile resources to enhance crop production. Through discussions of the “classical five” phytohormones--gibberellins, cytokinins, ethylene, abscisic acid, and auxins--and the growing number of nontraditional PGRs such as oligosaccharins and brassinosteroids, Plant Growth Regulators in Agriculture and Horticulture reviews past and present uses of PGRs in managing crop yield and offers some speculation on future directions. Detailed discussions on the use of PGRs in, for example, grain, ornamental, and citrus crops, introduce readers to strategies for enhancing crop quantity and quality, for improving the postproduction quality of life of perishable plants, and for crop load management, respectively. The book also includes informative visuals, such as tables of common, chemical, and trade names of different commercially available PGRs; diagrams of various PGR processes; as well as before-and-after pictures illustrating the effects of PGRs. Plant Growth Regulators in Agriculture and Horticulture is a comprehensive text covering the role of plant growth regulators in: root formation manipulating yield potential plant stress protection ornamental horticulture postharvest life of ornamentals manipulating fruit development and storage quality citriculture reducing fruit drop bloom-thinning strategies If the history of agriculture, which is over 10,000 years old, was condensed into a twenty-four-hour span, science-based plant breeding would be only about fifteen minutes old. Still, the role of PGRs in agriculture is modest compared to other agrochemicals, such as fungicides, herbicides, and insecticides. Plant Growth Regulators in Agriculture and Horticulture is an invaluable guide to the varied roles filled by PGRs in the attainment of higher-quality, better-yielding crops.
The cultivation of rice in Japan has suffered from damage caused by baka nae disease, in which rice seedlings show abnormal growth (elongation) as the result of infection by a plant pathogen. Investigation of the taxonomy of this pathogen led to the commencement of gibberellin (GA) research among Japanese plant pathologists, who later identified it as Gibberella jujikuroi, its other name being Fusarium moniliforme. In 1926, Kurosawa demon strated the occurrence of an active principle in the culture media of fungus that showed the same symptoms as those of the rice disease. In 1938, this finding was followed by the successful isolation of the active principles as crystals from the culture filtrate. This was achieved by the Japanese agri cultural chemists Yabuta and Sumiki, of The University of Tokyo, who named these active principles gibberellins A and B. Following World War II, this discovery attracted the interest of scientists around the world, and research on GA was pursued on a worldwide scale. One of the most outstanding discoveries in GA research after the isolation of GA as the metabolite of the plant pathogen must be the isolation and characterization of GAs from tissues of higher plants by the MacMillan group, West and Phinney, and the Tokyo University group in 1958 and 1959. Thus, GAs have been recognized as one of the most important classes of plant hormones.
Plant hormones play a crucial role in controlling the way in which plants growand develop. Whilemetabolism providesthepowerand buildingblocks for plant life, it is the hormones that regulate the speed of growth of the individual parts and integrate these parts to produce the form that we recognize as a plant. In addition, theyplayacontrolling role inthe processes of reproduction. This book is a description ofthese natural chemicals: how they are synthesizedand metabolized; howthey work; whatwe knowoftheir molecular biology; how we measure them; and a description ofsome ofthe roles they play in regulating plant growth and development. Emphasis has also been placed on the new findings on plant hormones deriving from the expanding use ofmolecular biology as a tool to understand these fascinating regulatory molecules. Even at the present time, when the role of genes in regulating all aspects of growth and development is considered of prime importance, it is still clear that the path of development is nonetheless very much under hormonal control, either via changes in hormone levels in response to changes in gene transcription, or with the hormones themselves as regulators ofgene transcription. This is not a conference proceedings, but a selected collection ofnewly written, integrated, illustrated reviews describing our knowledge of plant hormones, and the experimental work that is the foundation of this knowledge.
The current growing interest of molecular biologists in plant hormone research is undoubtedly the most promising development of recent times. Many papers were presented during the 14th International Conference on Plant Growth Substances illustrating the impact of this new approach on our understanding of hormone-controlled processes. The specific character is the integrated study of plant growth regulation at all levels ranging from single molecules to the entire plant and its functioning in the environment. Hormones play an essential role in the regulation, but not an exclusive one. Other compounds and factors, such as Ca2+, for instance are often of equal relevance, because they may take part in the signal transduction pathway. Moreover, regulation of the regulator by non-hormonal factors is an essential part of any control mechanism. The present volume reflects the change in interest from plant growth substances to plant growth regulation.
Plant tissue culture (PTC) technology has gained unassailable success for its various commercial and research applications in plant sciences. Plant growth regulators (PGRs) are an essential part of any plant tissue culture intervention for propagation or modification of plants. A wide range of PGRs are available, including aromatic compounds that show cytokinin activities, promote cell division and micro-propagation, viz. kinetin, N6-benzyladenine and topolins. Topolins are naturally occurring aromatic compounds that have gained popularity as an effective alternative for other frequently used cytokinins in in vitro culture of plants. Among them, meta-topolin [6-(3-hydroxybenzlyamino) purine] is the most popular and its use in plant tissue culture has amplified swiftly. During the last few decades, there have been numerous reports highlighting the effectiveness of meta-topolin in micropropagation and alleviation of various physiological disorders, rooting and acclimatization of tissue culture raised plants.
Abscisic Acid in Plants, Volume 92, the latest release in the Advances in Botanical Research series, is a compilation of the current state-of-the-art on the topic. Chapters in this new release comprehensively describe latest knowledge on how ABA functions as a plant hormone. They cover topics related to molecular mechanisms as well as the biochemical and chemical aspects of ABA action: hormone biosynthesis, catabolism, transport, perception, signaling in plants, seeds and in response to biotic and abiotic stresses, hormone evolution and chemical biology, and much more. - Presents the latest release in the Advances in Botanical Research series - Provides an Ideal resource for post-graduates and researchers in the plant sciences, including plant physiology, plant genetics, plant biochemistry, plant pathology, and plant evolution - Contains contributions from internationally recognized authorities in their respective fields
As agriculture becomes more mechanized and science increases the possibilities for using inputs to enhance production, the role of PGRs becomes more vital. Plant Growth Regulators in Agriculture and Horticulture provides agriculture professionals and researchers with the information needed to effectively tap these versatile resources to enhance crop production.Through discussions of the “classical five” phytohormones--gibberellins, cytokinins, ethylene, abscisic acid, and auxins--and the growing number of nontraditional PGRs such as oligosaccharins and brassinosteroids, Plant Growth Regulators in Agriculture and Horticulture reviews past and present uses of PGRs in managing crop yield and offers some speculation on future directions.Detailed discussions on the use of PGRs in, for example, grain, ornamental, and citrus crops, introduce readers to strategies for enhancing crop quantity and quality, for improving the postproduction quality of life of perishable plants, and for crop load management, respectively. The book also includes informative visuals, such as tables of common, chemical, and trade names of different commercially available PGRs; diagrams of various PGR processes; as well as before-and-after pictures illustrating the effects of PGRs.Plant Growth Regulators in Agriculture and Horticulture is a comprehensive text covering the role of plant growth regulators in: root formation manipulating yield potential plant stress protection ornamental horticulture postharvest life of ornamentals manipulating fruit development and storage quality citriculture reducing fruit drop bloom-thinning strategiesIf the history of agriculture, which is over 10,000 years old, was condensed into a twenty-four-hour span, science-based plant breeding would be only about fifteen minutes old. Still, the role of PGRs in agriculture is modest compared to other agrochemicals, such as fungicides, herbicides, and insecticides. Plant Growth Regulators in Agriculture and Horticulture is an invaluable guide to the varied roles filled by PGRs in the attainment of higher-quality, better-yielding crops.
Advances in Triazole Chemistry reviews the ever-widening scope of triazole chemistry. Triazole is an exceptional structural motif with a range of applications across scientific disciplines, including materials science, organocatalysis, agrochemicals, and medicinal chemistry. These many applications of different classes of triazoles have promoted the development of a range of synthetic strategies over the past few years, which are presented here along with recent and ecofriendly methods for the synthesis of all types of triazoles. The book also reviews the recent notable applications in chemical ligation, peptidomimetics, carbohydrate chemistry, nanotechnology, and polymer and materials science. This comprehensive resource is ideal for researchers using triazoles in various disciplines, as well as chemists working in the pharmaceutical, polymer, and agrochemical industries. - Includes coverage of the role triazoles play in DNA synthesis - Features comprehensive information on 1,2,3-triazoles and 1,2,4-triazoles and their subclasses, synthesis, and applications - Serves as an ideal reference for researchers and chemists interested in using triazole chemistry for functionalization, modification, and development of target products
As agriculture becomes more mechanized and science increases the possibilities for using inputs to enhance production, the role of PGRs becomes more vital. Plant Growth Regulators in Agriculture and Horticulture provides agriculture professionals and researchers with the information needed to effectively tap these versatile resources to enhance crop production. Through discussions of the “classical five” phytohormones--gibberellins, cytokinins, ethylene, abscisic acid, and auxins--and the growing number of nontraditional PGRs such as oligosaccharins and brassinosteroids, Plant Growth Regulators in Agriculture and Horticulture reviews past and present uses of PGRs in managing crop yield and offers some speculation on future directions. Detailed discussions on the use of PGRs in, for example, grain, ornamental, and citrus crops, introduce readers to strategies for enhancing crop quantity and quality, for improving the postproduction quality of life of perishable plants, and for crop load management, respectively. The book also includes informative visuals, such as tables of common, chemical, and trade names of different commercially available PGRs; diagrams of various PGR processes; as well as before-and-after pictures illustrating the effects of PGRs. Plant Growth Regulators in Agriculture and Horticulture is a comprehensive text covering the role of plant growth regulators in: root formation manipulating yield potential plant stress protection ornamental horticulture postharvest life of ornamentals manipulating fruit development and storage quality citriculture reducing fruit drop bloom-thinning strategies If the history of agriculture, which is over 10,000 years old, was condensed into a twenty-four-hour span, science-based plant breeding would be only about fifteen minutes old. Still, the role of PGRs in agriculture is modest compared to other agrochemicals, such as fungicides, herbicides, and insecticides. Plant Growth Regulators in Agriculture and Horticulture is an invaluable guide to the varied roles filled by PGRs in the attainment of higher-quality, better-yielding crops.
Introduction: botany and importance. Taxonomy and systematics. Important mango cultivars and their descriptors. Breeding and genetics. Reproductive physiology. Ecophysiology. Fruit diseases. Foliar, floral and soilborne diseases. Physiological disorders. Pests. Crop production: propagation. Crop production: mineral nutrition. Crop production management. Postharvest physiology. Postharvest technology and quarantine treatments. World mango trade and the economics of mango production. Fruit processing. Biotechnology.