Download Free Use Of Hydrated Lime In Asphalt Paving Mixtures Book in PDF and EPUB Free Download. You can read online Use Of Hydrated Lime In Asphalt Paving Mixtures and write the review.

Laboratory and field tests were conducted to evaluate the use of hydrated lime as an antistrip additive in hot mix asphalt concrete. Batch and drum mix plants were used to prepare the paving mixtures. Lime was added dry and in slurry form. Individual aggregates and the total aggregate were separately treated with lime slurry and allowed to age for different time periods from a few minutes to 30 days before mixing with asphalt. Laboratory mixed and plant mixed asphalt concrete was tested using indirect tension and resilient modulus before and after moisture conditioning. Results indicate that lime is effective in reducing moisture susceptibility and that it is most effective when applied in the presence of moisture. In addition, a time delay after application of lime to aggregate is unnecessary. There are no significant differences in mixtures produced in batch and drum plants.
This synthesis will be of interest to pavement designers, construction engineers, maintenance engineers, and others interested in avoiding or limiting moisture damage in asphalt concrete. Information is provided on physical and chemical explanations for moisture damage in asphalt concrete, along with a discussion of current practices and test methods for determining or reducing the susceptibility of various asphalt concrete components and mixtures to such damage. Moisture damage in asphalt concrete is a nationwide problem which often necessitates premature replacement of highway pavement surfaces. This report of the Transportation Research Board describes the underlying physical and chemical phenomena responsible for such damage. Current test methods used to determine the susceptibility of asphalt concretes, or their constituents, to moisture damage are described and evaluated. Additionally, current practices for minimizing the potential for moisture damage are examined.