Download Free Use Of Atmospheric Pressure Plasma Jet For Polymer Surface Modification Book in PDF and EPUB Free Download. You can read online Use Of Atmospheric Pressure Plasma Jet For Polymer Surface Modification and write the review.

This book comprehensively addresses surface modification of natural fibers to make them more effective, cost-efficient, and environmentally friendly. Topics include the elucidation of important aspects surrounding chemical and green approaches for the surface modification of natural fibers, the use of recycled waste, properties of biodegradable polyesters, methods such as electrospinning, and applications of hybrid composite materials.
Plasma as the fourth state of matter is an ionized gas consisting of both negative and positive ions, electrons, neutral atoms, radicals, and photons. In the last few decades, atmospheric-pressure plasmas have started to attract increasing attention from both scientists and industry due to a variety of potential applications. Because of increasing interest in the topic, the focus of this book is on providing engineers and scientists with a fundamental understanding of the physical and chemical properties of different atmospheric-pressure plasmas via plasma diagnostic techniques and their applications. The book has been organized into two parts. Part I focuses on the latest achievements in advanced diagnostics of different atmospheric-pressure plasmas. Part II deals with applications of different atmospheric-pressure plasmas.
An indispensable volume detailing the current and potential applications of atmospheric pressure plasma treatment by experts practicing in fields around the world Polymers are used in a wide variety of industries to fabricate legions of products because of their many desirable traits. However, polymers in general (and polyolefins, in particular) are innately not very adhesionable because of the absence of polar or reactive groups on their surfaces and concomitant low surface energy. Surface treatment of polymers, however, is essential to impart reactive chemical groups on their surfaces to enhance their adhesion characteristic. Proper surface treatment can endow polymers with improved adhesion without affecting the bulk properties. A plethora of techniques (ranging from wet to dry, simple to sophisticated, vacuum to non-vacuum) for polymer surface modification have been documented in the literature but the Atmospheric Pressure Plasma (APP) treatment has attracted much attention because it offers many advantages vis-a-vis other techniques, namely uniform treatment, continuous operation, no need for vacuum, simplicity, low cost, no environmental or disposal concern, and applicability to large area samples. Although the emphasis in this book is on the utility of APP treatment for enhancement of polymer adhesion, APP is also applicable and effective to modulate many other surface properties of polymers: superhydrophilicity, superhydrophobicity, anti-fouling, anti-fogging, anti-icing, cell adhesion, biocompatibility, tribological behavior, etc. The key features of Atmospheric Pressure Plasma Treatment of Polymers: Address design and functions of various types of reactors Bring out current and potential applications of APP treatment Represent the cumulative wisdom of many key academic and industry researchers actively engaged in this key and enabling technology
This book documents the proceedings of the Fifth International Symposium on this topic, held in Toronto. The book is divided into two parts: Part 1: Surface Modification Techniques; Part 2: Adhesion Improvement to Polymer Surfaces.Various ways to modify a host of polymer surfaces for a variety of purposes are covered in this book, with emphasis on
The book describes the experimental techniques employed to study surfaces and interfaces. The emphasis is on the experimental method. Therefore all chapters start with an introduction of the scientific problem, the theory necessary to understand how the technique works and how to understand the results. Descriptions of real experimental setups, experimental results at different systems are given to show both the strength and the limits of the technique. In a final part the new developments and possible extensions of the techniques are presented. The included techniques provide microscopic as well as macroscopic information. They cover most of the techniques used in surface science.
POLYMER SURFACE MODIFICATION TO ENHANCE ADHESION This unique, comprehensive and groundbreaking book is the first on this important subject. Polymer Surface Modification to Enhance Adhesion comprises 13 chapters and is divided into two parts: Part 1: Energetic Treatments; and Part 2: Chemical Treatments. Topics covered include atmospheric pressure plasma treatment of polymers to enhance adhesion; corona treatment of polymer surfaces to enhance adhesion; flame surface treatment of polymers to enhance adhesion; vacuum UV photo-oxidation of polymer surfaces to enhance adhesion; optimization of adhesion of polymers using photochemical surface modification UV/Ozone surface treatment of polymers to enhance adhesion; adhesion enhancement of polymer surfaces by ion beam treatment; polymer surface modification by charged particles; laser surface modification of polymeric materials; competition in adhesion between polysort and monosort functionalized polyolefinic surfaces; amine-terminated dendritic materials for polymer surface modification; arginine-glycine-aspartic acid (RGD) modification of polymer surfaces; and adhesion promoters for polymer surfaces. Audience The book will be of great interest to polymer scientists, surface scientists, adhesionists, materials scientists, plastics engineers, and to those involved in adhesive bonding, packaging, printing, painting, metallization, biological adhesion, biomedical devices, and polymer composites.
In this new book, an interdisciplinary and international team of experts provides an exploration of the emerging plasma science that is poised to make the plasma technology a reality in the manufacturing sector. The research presented here will stimulate new ideas, methods, and applications in the field of plasma science and nanotechnology. Plasma technology applications are being developed that could impact the global market for power, electronics, mineral, and other fuel commodities. Currently, plasma science is described as a revolutionary discipline in terms of its possible impact on industrial applications. It offers potential solutions to many problems using emerging techniques. In this book the authors provide a broad overview of recent trends in field plasma science and nanotechnology. Divided into several parts, Plasma and Fusion Science: From Fundamental Research to Technological Applications explores some basic plasma applications and research, space and atmospheric plasma, nuclear fusion, and laser plasma and industrial applications of plasma. A wide variety of cutting-edge topics are covered, including: • basic plasma physics • computer modeling for plasma • exotic plasma (including dusty plasma) • industrial plasma applications • laser plasma • nuclear fusion technology • plasma diagnostics • plasma processing • pulsed power • space astrophysical plasma • plasma and nanotechnology Pointing to current and possible future developments in plasma science and technology, the diverse research presented here will be valuable for researchers, scientists, industry professionals, and others involved in the revolutionary field of plasma and fusion science.
This book contains selected contributions on surface modification to improve the properties of solid materials. The surface properties are tailored either by functionalization, etching, or deposition of a thin coating. Functionalization is achieved by a brief treatment with non-equilibrium gaseous plasma containing suitable radicals that interact chemically with the material surface and thus enable the formation of rather stable functional groups. Etching is performed in order to modify the surface morphology. The etching parameters are selected in such a way that a rich morphology of the surfaces is achieved spontaneously on the sub-micrometer scale, without using masks. The combination of adequate surface morphology and functionalization of materials leads to superior surface properties which are particularly beneficial for the desired response upon incubation with biological matter. Alternatively, the materials are coated with a suitable thin film that is useful in various applications from food to aerospace industries.
The book “Frontiers and Textile Materials will deal with the important materials that can be utilized for value-addition and functionalization of textile materials. The topics covered in this book includes the materials like enzymes, polymers, etc. that are utilized for conventional textile processing and the advanced materials like nanoparticles which are expected to change the horizons of textiles. The futuristic techniques for textile processing like plasma are also discussed.