Download Free Urban Water Infrastructure Book in PDF and EPUB Free Download. You can read online Urban Water Infrastructure and write the review.

Building water-wise cities is a pressing need nowadays in both developed and developing countries. This is mainly due to the limitation of the available water resources and aging infrastructure to meet the needs of adapting to social and environmental changes and for urban liveability. This is the first book to provide comprehensive insights into theoretical, systematic, and engineering aspects of water-wise cities with a broad coverage of global issues. The book aims to (1) provide a theoretical framework of water-wise cities and associated sustainable water systems including key concepts and principles, (2) provide a brand-new thinking on the design and management of sustainable urban water systems of various scales towards a paradigm shift under the resource and environmental constraints, and (3) provide a technological perspective with successful case studies of technology selection, integration, and optimization on the “fit-for-purpose” basis.
This book investigates the implications of different developments in water technology and infrastructure for urban sustainability and the relationship between cities and nature.
This book features expert contributions on key sustainability aspects of urban water management in Chinese agglomerations. Both technical and institutional pathways to sustainable urban water management are developed on the basis of a broad, interdisciplinary problem analysis.
This state-of-the-art resource draws upon the accumulated wisdom of a carefully chosen team of internationally recognized experts selected for their extensive experience in the essential aspects of water supply systems. This industry “who’s who” covers everything from the historical perspectives of urban water supply to planning, safety and security – an especially timely and crucial issue, management, performance indicators, operation, pricing, maintenance, and public-private partnerships. The author includes informative case studies for valuable “real world” perspective.
This book presents three distinct pillars for analysis, design, and planning: urban water cycle and variability as the state of water being; landscape architecture as the medium for built-by-design; and total systems as the planning approach. The increasing demand for water and urban and industrial expansions have caused myriad environmental, social, economic, and political predicaments. More frequent and severe floods and droughts have changed the resiliency and ability of water infrastructure systems to operate and provide services to the public. These concerns and issues have also changed the way we plan and manage our water resources. Focusing on urban challenges and contexts, the book provides foundational information regarding water science and engineering while also examining topics relating to urban stormwater, water supply, and wastewater infrastructures. It also addresses critical emerging issues such as simulation and economic modeling, flood resiliency, environmental visualization, satellite data applications, and digital data model (DEM) advancements. Features: Explores various theoretical, practical, and real-world applications of system analysis, design, and planning of urban water infrastructures Discusses hydrology, hydraulics, and basic laws of water flow movement through natural and constructed environments Describes a wide range of novel topics ranging from water assets, water economics, systems analysis, risk, reliability, and disaster management Examines the details of hydrologic and hydrodynamic modeling and simulation of conceptual and data-driven models Delineates flood resiliency, environmental visualization, pattern recognition, and machine learning attributes Explores a compilation of tools and emerging techniques that elevate the reader to a higher plateau in water and environmental systems management Water Systems Analysis, Design, and Planning: Urban Infrastructure serves as a useful resource for advanced undergraduate and graduate students taking courses in the areas of water resources and systems analysis, as well as practicing engineers and landscape professionals.
A city is more than a massing of citizens, a layout of buildings and streets, or an arrangement of political, economic, and social institutions. It is also an infrastructure of ideas that are a support for the beliefs, values, and aspirations of the people who created the city. In City Water, City Life, celebrated historian Carl Smith explores this concept through an insightful examination of the development of the first successful waterworks systems in Philadelphia, Boston, and Chicago between the 1790s and the 1860s. By examining the place of water in the nineteenth-century consciousness, Smith illuminates how city dwellers perceived themselves during the great age of American urbanization. But City Water, City Life is more than a history of urbanization. It is also a refreshing meditation on water as a necessity, as a resource for commerce and industry, and as an essential—and central—part of how we define our civilization.
Based on the latest developments research, this book delineates a systems approach urban water hydrology, engineering, planning, and management. It covers a range of classic urban water management issues such as the modeling of urban water cycles, urban water supply and distribution systems, demand forecasting, wastewater and storm water collection and treatment.
The little-known story of the systems that bring us our drinking water, how they were developed, the problems they are facing, and how they will be reinvented in the near future
by Professor Poul Harremoes Environmental engineering has been a discipline dominated by empirical approaches to engineering. Historically speaking, the development of urban drainage structures was very successful on the basis of pure empiricism. Just think of the impressive structures built by the Romans long before the discipline of hydraulics came into being. The fact is that the Romans did not know much about the theories of hydraulics, which were discovered as late as the mid-1800s. However, with the Renaissance came a new era. Astronomy (Galileos) and basic physics (Newton) started the scientific revolution and in the mid-1800s Navier and Stokes developed the application of Newtons laws to hydrodynamics, and later, St. Venant the first basic physics description of the motion of water in open channels. The combination of basic physical understanding of the phenomena involved in the flow of water in pipes and the experience gained by "trial and error", the engineering approach to urban drainage improved the design and performance of the engineering drainage infrastructure. However, due to the mathematical complications of the basic equations, solutions were available only to quite simple cases of practical significance until the introduction of new principles of calculation made possible by computers and their ability to crunch numbers. Now even intricate hydraulic phenomena can be simulated with a reasonable degree of confidence that the simulations are in agreement with performance in practice, if the models are adequately calibrated with sample performance data.