Download Free Unsettled Technology Opportunities For Vehicle Health Management And The Role For Health Ready Components Book in PDF and EPUB Free Download. You can read online Unsettled Technology Opportunities For Vehicle Health Management And The Role For Health Ready Components and write the review.

Game-changing opportunities abound for the application of vehicle health management (VHM) across multiple transportation-related sectors, but key unresolved issues continue to impede progress. VHM technology is based upon the broader field of advanced analytics. Much of traditional analytics efforts to date have been largely descriptive in nature and offer somewhat limited value for large-scale enterprises. Analytics technology becomes increasingly valuable when it offers predictive results or, even better, prescriptive results, which can be used to identify specific courses of action. It is this focus on action which takes analytics to a higher level of impact, and which imbues it with the potential to materially impact the success of the enterprise. Artificial intelligence (AI), specifically machine learning technology, shows future promise in the VHM space, but it is not currently adequate by itself for high-accuracy analytics. The recent push for health-ready components offers hope in resolving some of the issues slowing the implementation of VHM technology. Health-ready components are those components that provide the necessary functionality or information to allow them to be gracefully integrated into an overall VHM solution. Our primary focus area in this SAE EDGE™ Research Report is on maintaining the health of vehicles in various transportation sectors with the greatest content coming from automotive. Tremendous synergies can be achieved by applying these very broad concepts from automotive to aerospace and other sectors, and vice versa. As will be seen, these concepts are also important for key emerging product features and for the manufacturing systems that produce the vehicles. The barriers impeding progress are organizational, historical, technological, and legal, among others. We offer some insights into how these barriers arose with some potential courses of action to mitigate them as well as to stimulate further discussion. NOTE: SAE EDGE™ Research Reports are intended to identify and illuminate key issues in emerging, but still unsettled, technologies of interest to the mobility industry. The goal of SAE EDGE™ Research Reports is to stimulate discussion and work in the hope of promoting and speeding resolution of identified issues. SAE EDGE™ Research Reports are not intended to resolve the issues they identify or close any topic to further scrutiny. Click here to access the full SAE EDGETM Research Report portfolio. https://doi.org/10.4271/EPR2020003
To many, a digital twin offers “functionality,” or the ability to virtually rerun events that have happened on the real system and the ability to simulate future performance. However, this requires models based on the physics of the system to be built into the digital twin, links to data from sensors on the real live system, and sophisticated algorithms incorporating artificial intelligence (AI) and machine learning (ML). All of this can be used for integrated vehicle health management (IVHM) decisions, such as determining future failure, root cause analysis, and optimized energy performance. All of these can be used to make decisions to optimize the operation of an aircraft—these may even extend into safety-based decisions. The Adoption of Digital Twins in Integrated Vehicle Health Management, however, still has a range of unsettled topics that cover technological reliability, data security and ownership, user presentation and interfaces, as well as certification of the digital twin’s system mechanics (i.e., AI, ML) for use in safety-critical applications. Click here to access the full SAE EDGETM Research Report portfolio. https://doi.org/10.4271/EPR2023024
The current healthcare system faces complications including data acquisition, interpretation, and delivery challenges, particularly in out-of-hospital scenarios. The shortage of medical resources intensifies the demand for efficient information gathering and processing. Moreover, the potential of pervasive computing still needs to be explored in healthcare, limiting the industry's ability to leverage innovations like artificial intelligence, augmented reality, and virtual reality. Ubiquitous Computing and Technological Innovation for Universal Healthcare addresses the medical field's critical challenges. It presents innovative solutions grounded in the marriage of Unmanned Aerial Vehicles (UAV), pervasive computing, and metaverse intelligence. It outlines how these UAVs redefine out-of-hospital care, addressing the pressing need for efficient data collection and interpretation amid a global medical shortage. Integrating cognitive algorithms is explored to automate diagnosis and enhance healthcare systems' emergency responsiveness. The book revolves around developing and integrating treatment programs leveraging UAV communication. Topics such as artificial intelligence, telemedicine, blockchain, digital twins, augmented reality, and virtual reality are delved into for their role in creating intelligent healthcare systems. The focus on rapid identification of underlying health issues, real-time monitoring in the metaverse, and the economic, social, and environmental impact of these systems adds depth to the discourse. Structured as a vital resource for researchers, academicians, industry professionals, policy-makers, and system designers, this book bridges the gap between theory and application.
Introduction to Maintenance, Repair and Overhaul of Aircraft, Engines and Components brings together the basic aspects of a fundamentally important part of the aerospace industry, the one that supports the global technical efforts to keep passenger and cargo planes flying reliably and safely. Over time, aircraft components and structural parts are subject to environmental effects, such as corrosion and other types of material deterioration, wear and fatigue. Such parts could fail in service and affect the safe operation of the aircraft if the degradation were not detected and addressed in time. Regular planned maintenance supports the current and future value of the aircraft by minimizing the physical decline of the aircraft and engines throughout its life. Introduction to Maintenance, Repair and Overhaul of Aircraft, Engines and Components was written by the industry veteran, Shevantha K. Weerasekera, an aerospace engineer with 20+ years of aircraft maintenance experience, who currently leads the engineering team of a major technical enterprise in the field.
Sustainability is both an ethical responsibility and business concern for the aerospace industry. Military and commercial avionics developers have pushed toward a common standard for interfaces, computing platforms, and software in hopes of having “reusability” and reducing weight with backplane computing architectures which, in theory, would support commonality across aircraft systems. The integrated modular avionics (IMA) and military Future Airborne Capability Environment (FACE) standards are two such examples. They emerged to support common computing architectures for reuse and sustainability concepts, from the beginning of aircraft development to the sundown or mortality phase. Pitfalls of Designing, Developing, and Maintaining Modular Avionics Systems in the Name of Sustainability looks at technological, organizational, and cultural challenges making reuse and IMA platform models difficult to fully realize their sustainability goals. Additionally, it considers the certification aspects of reuse and examines lessons learned from a successful reusable and sustainable platform. Click here to access the full SAE EDGETM Research Report portfolio. https://doi.org/10.4271/EPR2024010
The “holy grail” for prognostics and health management (PHM) professionals in the aviation sector is to have integrated vehicle health management (IVHM) systems incorporated into standard aircraft maintenance policies. Such a change from current aerospace industry practices would lend credibility to this field by validating its claims of reducing repair and maintenance costs and, hence, the overall cost of ownership of the asset. Ultimately, more widespread use of advanced PHM techniques will have a positive impact on safety and, for some cases, might even allow aircraft designers to reduce the weight of components because the uncertainty associated with estimating their predicted useful life can be reduced. We will discuss how standard maintenance procedures are developed, who the various stakeholders are, and – based on this understanding - outline how new PHM systems can gain the required approval to be included in these standard practices. There have been a few limited successes in this field already, and we will discuss the lessons learned in developing these systems. Finally, we will review the progress that the structural health management (SHM) community has made, and continues to make, to change the way the industry regards automated SHM systems. NOTE: SAE EDGE™ Research Reports are intended to identify and illuminate key issues in emerging, but still unsettled, technologies of interest to the mobility industry. The goal of SAE EDGE™ Research Reports is to stimulate discussion and work in the hope of promoting and speeding resolution of identified issues. SAE EDGE™ Research Reports are not intended to resolve the issues they identify or close any topic to further scrutiny. Click here to access the full SAE EDGETM Research Report portfolio. https://doi.org/10.4271/EPR2020006
The automotive industry appears close to substantial change engendered by “self-driving” technologies. This technology offers the possibility of significant benefits to social welfare—saving lives; reducing crashes, congestion, fuel consumption, and pollution; increasing mobility for the disabled; and ultimately improving land use. This report is intended as a guide for state and federal policymakers on the many issues that this technology raises.
The anthrax incidents following the 9/11 terrorist attacks put the spotlight on the nation's public health agencies, placing it under an unprecedented scrutiny that added new dimensions to the complex issues considered in this report. The Future of the Public's Health in the 21st Century reaffirms the vision of Healthy People 2010, and outlines a systems approach to assuring the nation's health in practice, research, and policy. This approach focuses on joining the unique resources and perspectives of diverse sectors and entities and challenges these groups to work in a concerted, strategic way to promote and protect the public's health. Focusing on diverse partnerships as the framework for public health, the book discusses: The need for a shift from an individual to a population-based approach in practice, research, policy, and community engagement. The status of the governmental public health infrastructure and what needs to be improved, including its interface with the health care delivery system. The roles nongovernment actors, such as academia, business, local communities and the media can play in creating a healthy nation. Providing an accessible analysis, this book will be important to public health policy-makers and practitioners, business and community leaders, health advocates, educators and journalists.
This book introduces the methods for predicting the future behavior of a system’s health and the remaining useful life to determine an appropriate maintenance schedule. The authors introduce the history, industrial applications, algorithms, and benefits and challenges of PHM (Prognostics and Health Management) to help readers understand this highly interdisciplinary engineering approach that incorporates sensing technologies, physics of failure, machine learning, modern statistics, and reliability engineering. It is ideal for beginners because it introduces various prognostics algorithms and explains their attributes, pros and cons in terms of model definition, model parameter estimation, and ability to handle noise and bias in data, allowing readers to select the appropriate methods for their fields of application.Among the many topics discussed in-depth are:• Prognostics tutorials using least-squares• Bayesian inference and parameter estimation• Physics-based prognostics algorithms including nonlinear least squares, Bayesian method, and particle filter• Data-driven prognostics algorithms including Gaussian process regression and neural network• Comparison of different prognostics algorithms divThe authors also present several applications of prognostics in practical engineering systems, including wear in a revolute joint, fatigue crack growth in a panel, prognostics using accelerated life test data, fatigue damage in bearings, and more. Prognostics tutorials with a Matlab code using simple examples are provided, along with a companion website that presents Matlab programs for different algorithms as well as measurement data. Each chapter contains a comprehensive set of exercise problems, some of which require Matlab programs, making this an ideal book for graduate students in mechanical, civil, aerospace, electrical, and industrial engineering and engineering mechanics, as well as researchers and maintenance engineers in the above fields.
"The Nation has lost sight of its public health goals and has allowed the system of public health to fall into 'disarray'," from The Future of Public Health. This startling book contains proposals for ensuring that public health service programs are efficient and effective enough to deal not only with the topics of today, but also with those of tomorrow. In addition, the authors make recommendations for core functions in public health assessment, policy development, and service assurances, and identify the level of government--federal, state, and local--at which these functions would best be handled.