Download Free Unmanned Aerial Systems In Agriculture Book in PDF and EPUB Free Download. You can read online Unmanned Aerial Systems In Agriculture and write the review.

This book showcases how new and emerging technologies like Unmanned Aerial Vehicles (UAVs) are trying to provide solutions to unresolved socio-economic and environmental problems. Unmanned vehicles can be classified into five different types according to their operation. These five types are unmanned ground vehicles, unmanned aerial vehicles, unmanned surface vehicles (operating on the surface of the water), unmanned underwater vehicles, and unmanned spacecraft. Unmanned vehicles can be guided remotely or function as autonomous vehicles. The technology has a wide range of uses including agriculture, industry, transport, communication, surveillance and environment applications. UAVs are widely used in precision agriculture; from monitoring the crops to crop damage assessment. This book explains the different methods in which they are used, providing step-by-step image processing and sample data. It also discusses how smart UAVs will provide unique opportunities for manufacturers to utilise new technological trends to overcome the current challenges of UAV applications. The book will be of great interest to researchers engaged in forest carbon measurement, road patrolling, plantation monitoring, crop yield estimation, crop damage assessment, terrain modelling, fertilizer control, and pest control.
Agricultural drones are expected to revolutionize the way we conduct agronomic procedures and maintain natural vegetation on earth. This book explores the increasing importance of the role of aerial robots in managing agricultural farms and natural resources. Agricultural Drones: A Peaceful Pursuit provides a wealth of information on drone usage in agriculture. The book discusses the advanced sensors and imaging capabilities of drones that give farmers new ways to increase yields and reduce crop damage. An introductory chapter provides historical data, with details about various models of drones as well as the most recent and popular agricultural drones in usage. The book goes onto look at such topics as the use of drones for soil fertility, production agronomy, irrigation, weed control, pest and disease control, grain yield forecasting, and economic advantages from drone use. This timely and useful volume will be a valuable resource for faculty, agricultural extension officers, and farmers and farm consultancy agencies. This book would also serve as an excellent textbook for students in agriculture, engineering, geography, etc. Key features: • outlines the advantages of using drones in agriculture, such as for the management of soil fertility, the study of natural resources and vegetation, the maintenance of adequate irrigation, and the control of weeds and pests • covers the economic advantages of using drones in agriculture • examines the regulatory aspects of agricultural drones • provides actual examples of drone usage in agriculture
The FAO-ITU E-agriculture strategy guide (available at http://www.fao.org/3/a-i5564e.pdf) is actively being used to assist countries in the successful identification, development and implementation of sustainable ICT solutions for agriculture.The use of unmanned aerial vehicles (UAVs), also known as drones, and connected analytics has great potential to support and address some of the most pressing problems faced by agriculture in terms of access to actionable real-time quality data. Goldman Sachs predicts that the agriculture sector will be the second largest user of drones in the world in the next five years. Sensor networks based on the Internet of things (IoT) are increasingly being used in the agriculture sector to meet the challenge of harvesting meaningful and actionable information from the big data generated by these systems. This publication is the second in the series titled E-agriculture in action (2016), launched by FAO and ITU, and builds on the previous FAO publications that highlight the use of ICT for agriculture such as Mobile technologies for agriculture and rural development (2012), Information and communication technologies for agriculture and rural development (2013) and Success stories on information and communication technologies for agriculture and rural development (2015). The ultimate aim is to promote successful, scalable, sustainable and replicable ICT for agriculture (ICT4Ag) solutions.
This book covers three main types of agricultural systems: the use of robotics, drones (unmanned aerial vehicles), and satellite-guided precision farming methods. Some of these are well refined and are currently in use, while others are in need of refinement and are yet to become popular. The book provides a valuable source of information on this developing field for those involved with agriculture and farming and agricultural engineering. The book is also applicable as a textbook for students and a reference for faculty.
UNMANNED AERIAL VEHICLES FOR INTERNET OF THINGS This comprehensive book deeply discusses the theoretical and technical issues of unmanned aerial vehicles for deployment by industries and civil authorities in Internet of Things (IoT) systems. Unmanned aerial vehicles (UAVs) has become one of the rapidly growing areas of technology, with widespread applications covering various domains. UAVs play a very important role in delivering Internet of Things (IoT) services in small and low-power devices such as sensors, cameras, GPS receivers, etc. These devices are energy-constrained and are unable to communicate over long distances. The UAVs work dynamically for IoT applications in which they collect data and transmit it to other devices that are out of communication range. Furthermore, the benefits of the UAV include deployment at remote locations, the ability to carry flexible payloads, reprogrammability during tasks, and the ability to sense for anything from anywhere. Using IoT technologies, a UAV may be observed as a terminal device connected with the ubiquitous network, where many other UAVs are communicating, navigating, controlling, and surveilling in real time and beyond line-of-sight. The aim of the 15 chapters in this book help to realize the full potential of UAVs for the IoT by addressing its numerous concepts, issues and challenges, and develops conceptual and technological solutions for handling them. Applications include such fields as disaster management, structural inspection, goods delivery, transportation, localization, mapping, pollution and radiation monitoring, search and rescue, farming, etc. In addition, the book covers: Efficient energy management systems in UAV-based IoT networks IoE enabled UAVs Mind-controlled UAV using Brain-Computer Interface (BCI) The importance of AI in realizing autonomous and intelligent flying IoT Blockchain-based solutions for various security issues in UAV-enabled IoT The challenges and threats of UAVs such as hijacking, privacy, cyber-security, and physical safety. Audience: Researchers in computer science, Internet of Things (IoT), electronics engineering, as well as industries that use and deploy drones and other unmanned aerial vehicles.
Remote Sensing in Precision Agriculture: Transforming Scientific Advancement into Innovation compiles the latest applications of remote sensing in agriculture using spaceborne, airborne and drones' geospatial data. The book presents case studies, new algorithms and the latest methods surrounding crop sown area estimation, determining crop health status, assessment of vegetation dynamics, crop diseases identification, crop yield estimation, soil properties, drone image analysis for crop damage assessment, and other issues in precision agriculture. This book is ideal for those seeking to explore and implement remote sensing in an effective and efficient manner with its compendium of scientifically and technologically sound information. - Presents a well-integrated collection of chapters, with quality, consistency and continuity - Provides the latest RS techniques in Precision Agriculture that are addressed by leading experts - Includes detailed, yet geographically global case studies that can be easily understood, reproduced or implemented - Covers geospatial data, with codes available through shared links
By using resources more efficiently, precision agriculture can make farming more productive and sustainable. This collection reviews current research on key technologies in precision agriculture and its applications.
Unmanned Aerial Systems in Agriculture: Eyes Above Fields bridges the gap between knowledge of concept and real-world use and operations of UASs in agri-production. Based on a valuable combination of themes presented at the 13th European Federation for Information Technology in Agriculture, Food and the Environment (EFITA) and supplemented by targeted invited articles of key-scientists, this book presents a full-spectrum view of the use of unmanned aerial systems (UAS) for agricultural applications. It integrates dispersed knowledge in the field, providing a holistic approach regarding UAVs and other UAS and their use in sustainable decisions. The integrated approach of the book provides a fresh look on contemporary agriculture-related issues, following precision farming approaches, by educating on a range of different issues of remote sensing and its use in agriculture. Furthermore, the operational planning aspects for UAS in agriculture focus part of the book provides information that is missing from other resources. - Addresses practical issues and the latest technology application insights - Provides specialized and comprehensive information for daily use-cases - Ties remote sensing using aerial systems and precision farming issues
This book provides a unique insight into the research and recent developments undertaken among the African Remote Sensing community in regard to the environment. It includes reports of the latest research outcomes in the field of remote sensing and geospatial information technologies, analyses discussions around operational topics such as capacity building, Spatial Data Infrastructure (SDI), applications of advanced remote sensing technologies (LiDAR , Hyperspectral) in Africa, big data, space policy, and topics of high actually in the field of climate changes, ocean and coastal zone management, early warning systems, natural resources management or geospatial science for sustainable development goals. The book comprises the contributions of the AARSE (African Association of Remote Sensing of the Environment) international conference which is conducted biennially across Africa, alternately with the AfricaGIS conference. It is the premier forum in Africa for research on remote sensing technologies and geospatial information science, gathering leading scholars from the remote sensing and related communities. The conference is co-organised by the Arab Academy of Science and Technology, in partnership with the National Authority for Remote Sensing & Space Sciences (NARSS) of Egypte, and continues a long series of successful AARSE conferences which started in 1996, in Harare (Zimbabwe) and has been held in Abidjan (Cote D'Ivoire) in 1998, Cape Town (South Africa) in 2000, Abuja (Nigeria) in 2002, Nairobi (Kenya) in 2004, Cairo (Egypt) in 2006, Accra (Ghana) in 2008, Addis Abeba (Ethiopia) in 2010, El Jadida (Morocco) in 2012, Johannesburg (South Africa) in 2014, and in Kampala (Ouganda) in 2016. The book is mainly addressed to practitioners and experts from academia, politics and industry.
Problems of joint application of heterogeneous ground and air robotic means while performing the agricultural technological tasks that require physical interaction with agricultural products and the environment are discussed in the book. Proposed solutions for the exchange of energy and physical resources of unmanned aerial vehicles on ground service platforms, automation of the process of collecting agricultural products and ensuring the stability of the air manipulation system at physical interaction with a ground object are important for the transport and agricultural industry robotization. The book addresses the researchers investigating interdisciplinary issues of agricultural production robotization, problems of information, physical and energy interaction of ground and air robots; recommended to postgraduates and students studying "Mechatronics and robotics" and "Technologies, mechanization and power equipment in agriculture, forestry and fisheries."