Download Free University Education In Computing Science Book in PDF and EPUB Free Download. You can read online University Education In Computing Science and write the review.

The field of computer science (CS) is currently experiencing a surge in undergraduate degree production and course enrollments, which is straining program resources at many institutions and causing concern among faculty and administrators about how best to respond to the rapidly growing demand. There is also significant interest about what this growth will mean for the future of CS programs, the role of computer science in academic institutions, the field as a whole, and U.S. society more broadly. Assessing and Responding to the Growth of Computer Science Undergraduate Enrollments seeks to provide a better understanding of the current trends in computing enrollments in the context of past trends. It examines drivers of the current enrollment surge, relationships between the surge and current and potential gains in diversity in the field, and the potential impacts of responses to the increased demand for computing in higher education, and it considers the likely effects of those responses on students, faculty, and institutions. This report provides recommendations for what institutions of higher education, government agencies, and the private sector can do to respond to the surge and plan for a strong and sustainable future for the field of CS in general, the health of the institutions of higher education, and the prosperity of the nation.
The growing trend for high-quality computer science in school curricula has drawn recent attention in classrooms. With an increasingly information-based and global society, computer science education coupled with computational thinking has become an integral part of an experience for all students, given that these foundational concepts and skills intersect cross-disciplinarily with a set of mental competencies that are relevant in their daily lives and work. While many agree that these concepts should be taught in schools, there are systematic inequities that exist to prevent students from accessing related computer science skills. The Handbook of Research on Equity in Computer Science in P-16 Education is a comprehensive reference book that highlights relevant issues, perspectives, and challenges in P-16 environments that relate to the inequities that students face in accessing computer science or computational thinking and examines methods for challenging these inequities in hopes of allowing all students equal opportunities for learning these skills. Additionally, it explores the challenges and policies that are created to limit access and thus reinforce systems of power and privilege. The chapters highlight issues, perspectives, and challenges faced in P-16 environments that include gender and racial imbalances, population of growing computer science teachers who are predominantly white and male, teacher preparation or lack of faculty expertise, professional development programs, and more. It is intended for teacher educators, K-12 teachers, high school counselors, college faculty in the computer science department, school administrators, curriculum and instructional designers, directors of teaching and learning centers, policymakers, researchers, and students.
Why so few African American and Latino/a students study computer science: updated edition of a book that reveals the dynamics of inequality in American schools. The number of African Americans and Latino/as receiving undergraduate and advanced degrees in computer science is disproportionately low. And relatively few African American and Latino/a high school students receive the kind of institutional encouragement, educational opportunities, and preparation needed for them to choose computer science as a field of study and profession. In Stuck in the Shallow End, Jane Margolis and coauthors look at the daily experiences of students and teachers in three Los Angeles public high schools: an overcrowded urban high school, a math and science magnet school, and a well-funded school in an affluent neighborhood. They find an insidious “virtual segregation” that maintains inequality. The race gap in computer science, Margolis discovers, is one example of the way students of color are denied a wide range of occupational and educational futures. Stuck in the Shallow End is a story of how inequality is reproduced in America—and how students and teachers, given the necessary tools, can change the system. Since the 2008 publication of Stuck in the Shallow End, the book has found an eager audience among teachers, school administrators, and academics. This updated edition offers a new preface detailing the progress in making computer science accessible to all, a new postscript, and discussion questions (coauthored by Jane Margolis and Joanna Goode).
This book provides an overview of how to approach computer science education research from a pragmatic perspective. It represents the diversity of traditions and approaches inherent in this interdisciplinary area, while also providing a structure within which to make sense of that diversity. It provides multiple 'entry points'- to literature, to methods, to topics Part One, 'The Field and the Endeavor', frames the nature and conduct of research in computer science education. Part Two, 'Perspectives and Approaches', provides a number of grounded chapters on particular topics or themes, written by experts in each domain. These chapters cover the following topics: * design * novice misconceptions * programming environments for novices * algorithm visualisation * a schema theory view on learning to program * critical theory as a theoretical approach to computer science education research Juxtaposed and taken together, these chapters indicate just how varied the perspectives and research approaches can be. These chapters, too, act as entry points, with illustrations drawn from published work.
The world is experiencing unprecedented rapidity of change, originating from pervasive technological developments. This book considers the effects of such rapid change from within computing disciplines, by allowing computing educationalists to deliver a considered verdict on the future of their discipline. The targeted future, the year 2020, was chosen to be distant enough to encourage authors to risk being visionary, while being close enough to ensure some anchorage to reality. The result is a scholarly set of contributions expressing the visions, hopes, concerns, predictions and analyses of trends for the future.
This is an authoritative introduction to Computing Education research written by over 50 leading researchers from academia and the industry.
University Education in Computing Science documents the proceedings of a conference on graduate academic and related research programs in computing science, held at the State University of New York at Stony Brook on June 8, 1967. This book provides a comprehensive study of the role of the computing sciences as an academic program, including its organizational structure and relationship to the computing center. The undergraduate education in computing science and operational policies of university computing centers are also elaborated. Other topics include the graduate computer science program at American universities, dilemma of computer sciences, and science and engineering of information. The industry's view of computing science and doctoral program in computing science are likewise covered. This publication is suitable for educational, industrial, and governmental organizations concerned with education related to computing science.
Improving Computer Science Education examines suitable theoretical frameworks for conceptualizing teaching and learning computer science. This highly useful book provides numerous examples of practical, "real world" applications of major computer science information topics, such as: • Spreadsheets • Databases • Programming Each chapter concludes with a section that summarzies recommendations for teacher professional development. Traditionally, computer science education has been skills-focused and disconnected from the reality students face after they leave the classroom. Improving Computer Science Education makes the subject matter useful and meaningful by connecting it explicitly to students' everyday lives.
Drawing together the most up-to-date research from experts all across the world, the second edition of Computer Science Education offers the most up-to-date coverage available on this developing subject, ideal for building confidence of new pre-service and in-service educators teaching a new discipline. It provides an international overview of key concepts, pedagogical approaches and assessment practices. Highlights of the second edition include: - New sections on machine learning and data-driven (epistemic) programming - A new focus on equity and inclusion in computer science education - Chapters updated throughout, including a revised chapter on relating ethical and societal aspects to knowledge-rich aspects of computer science education - A new set of chapters on the learning of programming, including design, pedagogy and misconceptions - A chapter on the way we use language in the computer science classroom. The book is structured to support the reader with chapter outlines, synopses and key points. Explanations of key concepts, real-life examples and reflective points keep the theory grounded in classroom practice. The book is accompanied by a companion website, including online summaries for each chapter, 3-minute video summaries by each author and an archived chapter on taxonomies and competencies from the first edition.
This book contains high-quality refereed research papers presented at the Fifth International Conference on Computer Science, Engineering, and Education Applications (ICCSEEA2022), which took place in Kyiv, Ukraine, on February 21–22, 2022, and was organized by the National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute," National Aviation University, and the International Research Association of Modern Education and Computer Science. State-of-the-art studies in computer science, artificial intelligence, engineering methodologies, genetic coding systems, deep learning with medical applications, and knowledge representation with educational applications are among the topics covered in the book. For academics, graduate students, engineers, management practitioners, and undergraduate students interested in computer science and its applications in engineering and education, this book is a valuable resource.