Download Free Uniqueness Theory Of Meromorphic Functions Book in PDF and EPUB Free Download. You can read online Uniqueness Theory Of Meromorphic Functions and write the review.

This book is the first monograph in the field of uniqueness theory of meromorphic functions dealing with conditions under which there is the unique function satisfying given hypotheses. Developed by R. Nevanlinna, a Finnish mathematician, early in the 1920's, research in the field has developed rapidly over the past three decades with a great deal of fruitful results. This book systematically summarizes the most important results in the field, including many of the authors' own previously unpublished results. In addition, useful skills and simple proofs are introduced. This book is suitable for higher level and graduate students who have a basic grounding in complex analysis, but will also appeal to researchers in mathematics.
This book introduces value distribution theory over non-Archimedean fields, starting with a survey of two Nevanlinna-type main theorems and defect relations for meromorphic functions and holomorphic curves. Secondly, it gives applications of the above theory to, e.g., abc-conjecture, Waring's problem, uniqueness theorems for meromorphic functions, and Malmquist-type theorems for differential equations over non-Archimedean fields. Next, iteration theory of rational and entire functions over non-Archimedean fields and Schmidt's subspace theorems are studied. Finally, the book suggests some new problems for further research. Audience: This work will be of interest to graduate students working in complex or diophantine approximation as well as to researchers involved in the fields of analysis, complex function theory of one or several variables, and analytic spaces.
"Value Distribution of Meromorphic Functions" focuses on functions meromorphic in an angle or on the complex plane, T directions, deficient values, singular values, potential theory in value distribution and the proof of the celebrated Nevanlinna conjecture. The book introduces various characteristics of meromorphic functions and their connections, several aspects of new singular directions, new results on estimates of the number of deficient values, new results on singular values and behaviours of subharmonic functions which are the foundation for further discussion on the proof of the Nevanlinna conjecture. The independent significance of normality of subharmonic function family is emphasized. This book is designed for scientists, engineers and post graduated students engaged in Complex Analysis and Meromorphic Functions. Dr. Jianhua Zheng is a Professor at the Department of Mathematical Sciences, Tsinghua University, China.
This book is the Proceedings of the Second ISAAC Congress. ISAAC is the acronym of the International Society for Analysis, its Applications and Computation. The president of ISAAC is Professor Robert P. Gilbert, the second named editor of this book, e-mail: [email protected]. The Congress is world-wide valued so highly that an application for a grant has been selected and this project has been executed with Grant No. 11-56 from *the Commemorative Association for the Japan World Exposition (1970). The finance of the publication of this book is exclusively the said Grant No. 11-56 from *. Thus, a pair of each one copy of two volumes of this book will be sent to all contributors, who registered at the Second ISAAC Congress in Fukuoka, free of charge by the Kluwer Academic Publishers. Analysis is understood here in the broad sense of the word, includ ing differential equations, integral equations, functional analysis, and function theory. It is the purpose of ISAAC to promote analysis, its applications, and its interaction with computation. With this objective, ISAAC organizes international Congresses for the presentation and dis cussion of research on analysis. ISAAC welcomes new members and those interested in joining ISAAC are encouraged to look at the web site http://www .math. udel.edu/ gilbert/isaac/index.html vi and http://www.math.fu-berlin.de/ rd/ ag/isaac/newton/index.html.
Mathematics is a beautiful subject, and entire functions is its most beautiful branch. Every aspect of mathematics enters into it, from analysis, algebra, and geometry all the way to differential equations and logic. For example, my favorite theorem in all of mathematics is a theorem of R. NevanJinna that two functions, meromorphic in the whole complex plane, that share five values must be identical. For real functions, there is nothing that even remotely corresponds to this. This book is an introduction to the theory of entire and meromorphic functions, with a heavy emphasis on Nevanlinna theory, otherwise known as value-distribution theory. Things included here that occur in no other book (that we are aware of) are the Fourier series method for entire and mero morphic functions, a study of integer valued entire functions, the Malliavin Rubel extension of Carlson's Theorem (the "sampling theorem"), and the first-order theory of the ring of all entire functions, and a final chapter on Tarski's "High School Algebra Problem," a topic from mathematical logic that connects with entire functions. This book grew out of a set of classroom notes for a course given at the University of Illinois in 1963, but they have been much changed, corrected, expanded, and updated, partially for a similar course at the same place in 1993. My thanks to the many students who prepared notes and have given corrections and comments.
For a given meromorphic function I(z) and an arbitrary value a, Nevanlinna's value distribution theory, which can be derived from the well known Poisson-Jensen for mula, deals with relationships between the growth of the function and quantitative estimations of the roots of the equation: 1 (z) - a = O. In the 1920s as an application of the celebrated Nevanlinna's value distribution theory of meromorphic functions, R. Nevanlinna [188] himself proved that for two nonconstant meromorphic func tions I, 9 and five distinctive values ai (i = 1,2,3,4,5) in the extended plane, if 1 1- (ai) = g-l(ai) 1M (ignoring multiplicities) for i = 1,2,3,4,5, then 1 = g. Fur 1 thermore, if 1- (ai) = g-l(ai) CM (counting multiplicities) for i = 1,2,3 and 4, then 1 = L(g), where L denotes a suitable Mobius transformation. Then in the 19708, F. Gross and C. C. Yang started to study the similar but more general questions of two functions that share sets of values. For instance, they proved that if 1 and 9 are two nonconstant entire functions and 8 , 82 and 83 are three distinctive finite sets such 1 1 that 1- (8 ) = g-1(8 ) CM for i = 1,2,3, then 1 = g.
"This book contains a comprehensive exposition of the Nevanlinna theory of meromorphic functions of one complex variable, with detailed study of deficiencies, value distribution, and asymptotic properties of meromorphic functions." "The main body of the book is a translation of the Russian original published in 1970, which has been one of the most popular sources in this field since then. New references and footnotes related to recent achievements in the topics considered in the original edition have been added and a few corrections made. A new Appendix with a survey of the results obtained after 1970 and extensive bibliography has been written by Alexandre Ermenko and James K. Langley for this English edition." "The only prerequisite for understanding material of this book is an undergraduate course in the theory of functions of one complex variable."--BOOK JACKET.
These notes present recent results in the value-distribution theory of L-functions with emphasis on the phenomenon of universality. Universality has a strong impact on the zero-distribution: Riemann’s hypothesis is true only if the Riemann zeta-function can approximate itself uniformly. The text proves universality for polynomial Euler products. The authors’ approach follows mainly Bagchi's probabilistic method. Discussion touches on related topics: almost periodicity, density estimates, Nevanlinna theory, and functional independence.
The series is devoted to the publication of monographs and high-level textbooks in mathematics, mathematical methods and their applications. Apart from covering important areas of current interest, a major aim is to make topics of an interdisciplinary nature accessible to the non-specialist. The works in this series are addressed to advanced students and researchers in mathematics and theoretical physics. In addition, it can serve as a guide for lectures and seminars on a graduate level. The series de Gruyter Studies in Mathematics was founded ca. 30 years ago by the late Professor Heinz Bauer and Professor Peter Gabriel with the aim to establish a series of monographs and textbooks of high standard, written by scholars with an international reputation presenting current fields of research in pure and applied mathematics. While the editorial board of the Studies has changed with the years, the aspirations of the Studies are unchanged. In times of rapid growth of mathematical knowledge carefully written monographs and textbooks written by experts are needed more than ever, not least to pave the way for the next generation of mathematicians. In this sense the editorial board and the publisher of the Studies are devoted to continue the Studies as a service to the mathematical community. Please submit any book proposals to Niels Jacob.