Download Free Unified Frameworks For Optimal Production Planning And Scheduling Book in PDF and EPUB Free Download. You can read online Unified Frameworks For Optimal Production Planning And Scheduling and write the review.

Batch processes are used to manufacture many fine organic chemicals, and as such they can be considered to underpin much of the modern chemical industry. Despite widespread use and a consequent huge contribution to wealth creation, batch processes have attracted limited attention outside the user industries. Batch chemicals processing uses a number of core techniques and technologies, such as scheduling and sequence control, agitation and batch filtration. The combination of these technologies with often complex chemistry, the multi-purpose nature of much of this type of plant, the distinctive safety and environmental issues, and a fast moving commercial environment makes the development of a successful batch process a considerable challenge for the chemist or engineer. The literature on the topics covered in this book is fragmented and often not easily accessible, so this handbook has been written to address this problem and to bring together design and process analysis methods in the core areas of batch process design. By combining the science and pragmatism required in the development of successful batch processes this new book provides answers to real problems in an accessible and concise way. Written by an international team of authors drawn from industry, consulting and academe, this book is an essential part of the library of any chemist, technologist or engineer working on the development of new or existing batch processes.
Understand common scheduling as well as other advanced operational problems with this valuable reference from a recognized leader in the field. Beginning with basic principles and an overview of linear and mixed-integer programming, this unified treatment introduces the fundamental ideas underpinning most modeling approaches, and will allow you to easily develop your own models. With more than 150 figures, the basic concepts and ideas behind the development of different approaches are clearly illustrated. Addresses a wide range of problems arising in diverse industrial sectors, from oil and gas to fine chemicals, and from commodity chemicals to food manufacturing. A perfect resource for engineering and computer science students, researchers working in the area, and industrial practitioners.
This book presents a number of efficient techniques for solving large-scale production scheduling and planning problems in process industries. The main content is supplemented by a wealth of illustrations, while case studies on large-scale industrial applications, ranging from continuous to semicontinuous and batch processes, round out the coverage. The book examines a variety of complex, real-world problems, and demonstrates solutions that are applicable to scenarios and countries around the world. Specifically, these case studies include: • the production planning of the bottling stage of a major brewery at the Cervecería Cuauhtémoc Moctezuma (Heineken Int) in Mexico;• the production scheduling for multi-stage semicontinuous processes at an ice-cream production facility of Unilever in the Netherlands;• the resource-constrained production planning for the yogurt production line at the KRI KRI dairy production facility in Greece; and• the production scheduling for large-scale, multi-stage batch processes at a pharmaceutical batch plant in Germany. In addition, the book includes industrial-inspired case studies of: • the simultaneous planning of production and logistics operations considering multi-site facilities for semicontinuous processes; and• the integrated planning of production and utility systems in process industries under uncertainty. Solving Large-scale Production Scheduling and Planning in the Process Industries offers a valuable reference guide for researchers and decision-makers alike, as it shows readers how to evaluate and improve existing installations, and how to design new ones. It is also well suited as a textbook for advanced courses on production scheduling and planning in industry, as it addresses the optimization of production and logistics operations in real-world process industries.
Clearly divided into three main sections, this practical book familiarizes readers with the area of planning in petroleum refining and petrochemical industry, while introducing several planning and modeling strategies encompassing single site refinery plants, multiple refinery networks, petrochemical networks, and refinery and petrochemical planning systems. It equally provides an insight into possible research directions and recommendations for the area of refinery and petrochemical planning. Furthermore, several appendices are included to explain the general background necessary, including stochastic programming, chance constraint programming, and robust optimization. For engineers and managers working in the petroleum industry as well as academic researchers in production, logistics, and supply chain management.
In recent years, supply chain planning has emerged as one of the most challenging problems in the industry. As a consequence, the planning focus is shifting from the management of plant-speci?c operations to a holistic view of the various logistics and productionstages, that is an approach in which suppliers, productionplants and customers are considered as constituents of an integrated network. A major dr- ing force behind this development lies in the globalization of the world economy, which has facilitated the co-operation between different partners working together in world-wide logistics networks. Hence, considerable cost savings can be gained from optimizing the structure and the operations of complex supply networks li- ing plants, suppliers, distribution centres and customers. Consequently, to improve the performance of the entire logistic chain, more sophisticated planning systems and more effective decision support are needed. Clearly, successful applications of supply chain management have driven the development of advanced planning systems (APS), which are concerned with s- porting decision-making activities at the strategic, tactical and operational decision level. These software packages basically rely on the application of quantitative methods, which are used to model the underlying complex decision problems c- sidering the limited availability of resources and the need to react on time to customer orders. The core module at the mid-term level of APS comprises op- ational supply chain planning. In many industries, productionstages are assigned to differentplantsand distribution centreshave been established at geographicallyd- persed locations.
This volume presents selected contributions by top researchers in the field of operations research, originating from the XVI Congress of APDIO. It provides interesting findings and applications of operations research methods and techniques in a wide variety of problems. The contributions address complex real-world problems, including inventory management with lateral transshipments, sectors and routes in solid-waste collection and production planning for perishable food products. It also discusses the latest techniques, making the volume a valuable tool for researchers, students and practitioners who wish to learn about current trends. Of particular interest are the applications of nonlinear and mixed-integer programming, data envelopment analysis, clustering techniques, hybrid heuristics, supply chain management and lot sizing, as well as job scheduling problems. This biennial conference, organized by APDIO, the Portuguese Association of Operational Research, held in Bragança, Portugal, in June 2013, presented a perfect opportunity to discuss the latest development in this field and to narrow the gap between academic researchers and practitioners.
Computer aided process engineering (CAPE) plays a key design and operations role in the process industries. This conference features presentations by CAPE specialists and addresses strategic planning, supply chain issues and the increasingly important area of sustainability audits. Experts collectively highlight the need for CAPE practitioners to embrace the three components of sustainable development: environmental, social and economic progress and the role of systematic and sophisticated CAPE tools in delivering these goals. - Contributions from the international community of researchers and engineers using computing-based methods in process engineering - Review of the latest developments in process systems engineering - Emphasis on a systems approach in tackling industrial and societal grand challenges
Embedded computing systems play an important and complex role in the functionality of electronic devices. With our daily routines becoming more reliant on electronics for personal and professional use, the understanding of these computing systems is crucial. Embedded Computing Systems: Applications, Optimization, and Advanced Design brings together theoretical and technical concepts of intelligent embedded control systems and their use in hardware and software architectures. By highlighting formal modeling, execution models, and optimal implementations, this reference source is essential for experts, researchers, and technical supporters in the industry and academia.
Quantitativeapproachesforsolvingproductionplanningandinventorymanagement problems in industry have gained growing importance in the past years. Due to the increasinguse of AdvancedPlanningSystems, a widespreadpracticalapplicationof the sophisticated optimization models and algorithms developed by the Production Management and Operations Research community now seem within reach. The possibility that productscan be replaced by certain substitute productsexists in various application areas of production planning and inventory management. Substitutions can be useful for a number of reasons, among others to circ- vent production and supply bottlenecks and disruptions, increase the service level, reduce setup costs and times, and lower inventories and thereby decrease ca- tal lockup. Considering the current trend in industry towards shorter product life cycles and greater product variety, the importance of substitutions appears likely to grow. Closely related to substitutions are ?exible bills-of-materials and recipes in multi-level production systems. However, so far, the aspect of substitutions has not attracted much attention in academic literature. Existing lot-sizing models matching complex requirements of industrial optimization problems (e.g., constrained capacities, sequence-dependent setups, multiple resources) such as the Capacitated Lot-Sizing Problem with Sequence-Dependent Setups (CLSD) and the General Lot-Sizing and Scheduling Problem for Multiple Production Stages (GLSPMS) do not feature in substitution options.