Download Free Understanding The Atom Nuclear Reactors Book in PDF and EPUB Free Download. You can read online Understanding The Atom Nuclear Reactors and write the review.

Physics of Nuclear Reactors presents a comprehensive analysis of nuclear reactor physics. Editors P. Mohanakrishnan, Om Pal Singh, and Kannan Umasankari and a team of expert contributors combine their knowledge to guide the reader through a toolkit of methods for solving transport equations, understanding the physics of reactor design principles, and developing reactor safety strategies. The inclusion of experimental and operational reactor physics makes this a unique reference for those working and researching nuclear power and the fuel cycle in existing power generation sites and experimental facilities. The book also includes radiation physics, shielding techniques and an analysis of shield design, neutron monitoring and core operations. Those involved in the development and operation of nuclear reactors and the fuel cycle will gain a thorough understanding of all elements of nuclear reactor physics, thus enabling them to apply the analysis and solution methods provided to their own work and research. This book looks to future reactors in development and analyzes their status and challenges before providing possible worked-through solutions. Cover image: Kaiga Atomic Power Station Units 1 - 4, Karnataka, India. In 2018, Unit 1 of the Kaiga Station surpassed the world record of continuous operation, at 962 days. Image courtesy of DAE, India. Includes methods for solving neutron transport problems, nuclear cross-section data and solutions of transport theory Dedicates a chapter to reactor safety that covers mitigation, probabilistic safety assessment and uncertainty analysis Covers experimental and operational physics with details on noise analysis and failed fuel detection
In the late 1980s, the National Cancer Institute initiated an investigation of cancer risks in populations near 52 commercial nuclear power plants and 10 Department of Energy nuclear facilities (including research and nuclear weapons production facilities and one reprocessing plant) in the United States. The results of the NCI investigation were used a primary resource for communicating with the public about the cancer risks near the nuclear facilities. However, this study is now over 20 years old. The U.S. Nuclear Regulatory Commission requested that the National Academy of Sciences provide an updated assessment of cancer risks in populations near USNRC-licensed nuclear facilities that utilize or process uranium for the production of electricity. Analysis of Cancer Risks in Populations near Nuclear Facilities: Phase 1 focuses on identifying scientifically sound approaches for carrying out an assessment of cancer risks associated with living near a nuclear facility, judgments about the strengths and weaknesses of various statistical power, ability to assess potential confounding factors, possible biases, and required effort. The results from this Phase 1 study will be used to inform the design of cancer risk assessment, which will be carried out in Phase 2. This report is beneficial for the general public, communities near nuclear facilities, stakeholders, healthcare providers, policy makers, state and local officials, community leaders, and the media.
Reviews the political and social context for nuclear power generation, the nuclear fuel cycles and their implications for the environment.
Fundamentals of Nuclear Reactor Physics offers a one-semester treatment of the essentials of how the fission nuclear reactor works, the various approaches to the design of reactors, and their safe and efficient operation . It provides a clear, general overview of atomic physics from the standpoint of reactor functionality and design, including the sequence of fission reactions and their energy release. It provides in-depth discussion of neutron reactions, including neutron kinetics and the neutron energy spectrum, as well as neutron spatial distribution. It includes ample worked-out examples and over 100 end-of-chapter problems. Engineering students will find this applications-oriented approach, with many worked-out examples, more accessible and more meaningful as they aspire to become future nuclear engineers. - A clear, general overview of atomic physics from the standpoint of reactor functionality and design, including the sequence of fission reactions and their energy release - In-depth discussion of neutron reactions, including neutron kinetics and the neutron energy spectrum, as well as neutron spatial distribution - Ample worked-out examples and over 100 end-of-chapter problems - Full Solutions Manual
This book is a collection of essays focused on the Gordian knot of our time, the closely coupled problems of energy poverty for billions of humans, and global warming for all humans. The central thesis of the book in that nuclear power is not only the only solution, it is a highly desirable solution, cheaper, safer, less intrusive on nature than all the alternatives.
From World War II to the present day, nuclear power has remained a controversial topic in the public eye. In the wake of ongoing debates about energy and the environment, policymakers and laypeople alike are once more asking the questions posed by countless others over the decades: What actually happens in a nuclear power plant? Can we truly trust nuclear energy to be safe and reliable? Where does all that radiation and waste go? This book explains everything you would want to know about nuclear power in a compelling and accessible way. Split into three parts, it walks readers through the basics of nuclear physics and radioactivity; the history of nuclear power usage, including the most important events and disasters; the science and engineering behind nuclear power plants; the politics and policies of various nations; and finally, the long-term societal impact of such technology, from uranium mining and proliferation to final disposal. Featured along the way are dozens of behind-the-scenes, full-color images of nuclear facilities. Written in a nontechnical style with minimal equations, this book will appeal to lay readers, policymakers and professionals looking to acquire a well-rounded view about this complex subject.
Dramatic progress has been made in all branches of physics since the National Research Council's 1986 decadal survey of the field. The Physics in a New Era series explores these advances and looks ahead to future goals. The series includes assessments of the major subfields and reports on several smaller subfields, and preparation has begun on an overview volume on the unity of physics, its relationships to other fields, and its contributions to national needs. Nuclear Physics is the latest volume of the series. The book describes current activity in understanding nuclear structure and symmetries, the behavior of matter at extreme densities, the role of nuclear physics in astrophysics and cosmology, and the instrumentation and facilities used by the field. It makes recommendations on the resources needed for experimental and theoretical advances in the coming decade.
“Persuasive and based on deep research. Atomic Awakening taught me a great deal."—Nature The American public's introduction to nuclear technology was manifested in destruction and death. With Hiroshima and the Cold War still ringing in our ears, our perception of all things nuclear is seen through the lens of weapons development. Nuclear power is full of mind-bending theories, deep secrets, and the misdirection of public consciousness, some deliberate, some accidental. The result of this fixation on bombs and fallout is that the development of a non-polluting, renewable energy source stands frozen in time. Outlining nuclear energy's discovery and applications throughout history, Mahaffey's brilliant and accessible book is essential to understanding the astounding phenomenon of nuclear power in an age where renewable energy and climate change have become the defining concerns of the twenty-first century.