Download Free Understanding Optical Fiber Communications Book in PDF and EPUB Free Download. You can read online Understanding Optical Fiber Communications and write the review.

2014A-8 The complete, up-to-date technical overview of optical communications. Fibre in the WAN, MAN, local loop, campus and LAN. Up-to-the-minute coverage of Wavelength Division Multiplexing. Previews today's advanced research--tomorrow's practical applications. Over the past 15 years, optical fibre's low cost, accuracy and enormous capacity has revolutionized wide area communications--making possible the Internet as we know it. Now a second fibre revolution is underway. Advanced technologies such as Wavelength Division Multiplexing (WDM) are adding even more capacity, and fibre is increasingly the media of choice in MANs, campuses, buildings, LANs--soon, even homes. If you need to understand the state-of-the-art in optical communications, Understanding Optical Communications is the most complete, up-to-date technical overview available. Fundamental principles and components of optical communications. Optical communications systems, interfaces and engineering challenges. FDDI, Ethernet on Fibre, ESCON, Fibre Channel, SONET/SDH and ATM. WDM: sparse and dense approaches, photonic networking, WDM for LANs and WDM standards. Fibre in the local loop, integration with HFC networks and passive optical networks. Understanding Optical Communications reviews key technical issues facing engineers as they extend fibre into new applications and markets. It presents an up-to-the-minute status report on WDM for LANs and MANs, including a rare glimpse at IBM's latest experimental systems. It points to the advanced research most likely to bear fruit: dark and spatial solitons, advanced fibres, plastic technologies, optical CDMA, TDM and packet-networks and more. Whether you're building optical systems or planning for them, this is the briefing you've been looking for.
For courses in Introduction to Fiber Optics and Introduction to Optical Networking in departments of Electronics Technology and Electronics Engineering Technology. Also suitable for corporate training programs. Ideal for technicians, entry-level engineers, and other nonspecialists, this best-selling practical, thorough, and accessible introduction to fiber optics reflects the expertise of an author who has followed the field for over 25 years. Using a non-theoretical/non-mathematical approach, it explains the principles of optical fibers, describes components and how they work, explores the tools and techniques used to work with them and the devices used to connect fiber network, and concludes with applications showing how fibers are used in modern communication systems. It covers both existing systems and developing technology, so students can understand present systems and new developments.
Beginning with an overview of historical development, the electromagnetic spectrum, and optical power basics, this book offers an in-depth discussion of optic receivers, optical transmitters and amplifiers. The text discusses attenuation, transmission losses, optical sources such as semiconductor light emitting diodes, and lasers, providing several dispersion-management schemes that restore the amplified signal to its original state. Topics are discussed in a structured manner, with definitions, explanations, examples, illustrations, and informative facts. Extensive pedagogical features, such as numerical problems, review questions, multiple choice questions, and student-focussed learning objectives, are also provided. Mathematical derivations and geometrical representations are included where necessary. This text will be useful for undergraduate and graduate students of electronics, communication engineering, and optical fiber communications.
Introduction to Fiber-Optic Communications provides students with the most up-to-date, comprehensive coverage of modern optical fiber communications and applications, striking a fine balance between theory and practice that avoids excessive mathematics and derivations. Unlike other textbooks currently available, this book covers all of the important recent technologies and developments in the field, including electro-optic modulators, coherent optical systems, and silicon integrated photonic circuits. Filled with practical, relevant worked examples and exercise problems, the book presents complete coverage of the topics that optical and communications engineering students need to be successful. From principles of optical and optoelectronic components, to optical transmission system design, and from conventional optical fiber links, to more useful optical communication systems with advanced modulation formats and high-speed DSP, this book covers the necessities on the topic, even including today's important application areas of passive optical networks, datacenters and optical interconnections.
This book highlights the fundamental principles of optical fiber technology required for understanding modern high-capacity lightwave telecom networks. Such networks have become an indispensable part of society with applications ranging from simple web browsing to critical healthcare diagnosis and cloud computing. Since users expect these services to always be available, careful engineering is required in all technologies ranging from component development to network operations. To achieve this understanding, this book first presents a comprehensive treatment of various optical fiber structures and diverse photonic components used in optical fiber networks. Following this discussion are the fundamental design principles of digital and analog optical fiber transmission links. The concluding chapters present the architectures and performance characteristics of optical networks.
Providing an up-to-date, comprehensive overview of modern optical-fiber communication systems, the principles and operation without the use of advanced mathematics, this book is an ideal introduction for sales and marketing personnel, business managers in telecommunications, technicians and college or university students interested in the ideas behind the telecommunications medium of the future.
Fiber-optic communication systems have advanced dramatically over the last four decades, since the era of copper cables, resulting in low-cost and high-bandwidth transmission. Fiber optics is now the backbone of the internet and long-distance telecommunication. Without it we would not enjoy the benefits of high-speed internet, or low-rate international telephone calls. This book introduces the basic concepts of fiber-optic communication in a pedagogical way. The important mathematical results are derived by first principles rather than citing research articles. In addition, physical interpretations and real-world analogies are provided to help students grasp the fundamental concepts. Key Features: Lucid explanation of key topics such as fibers, lasers, and photodetectors. Includes recent developments such as coherent communication and digital signal processing. Comprehensive treatment of fiber nonlinear transmission. Worked examples, exercises, and answers. Accompanying website with PowerPoint slides and numerical experiments in MATLAB. Intended primarily for senior undergraduates and graduates studying fiber-optic communications, the book is also suitable as a professional resource for researchers working in the field of fiber-optic communications.
"Discusses several dispersion-management schemes that restore amplified signal to its original state"--
This book is intended to support and promote interdisciplinary research in optical fiber communications by providing essential background in both the physical and mathematical principles of the discipline. It is written to be as independent as possible while taking the reader to the frontiers of research on fiber optics communications.