Download Free Ultrasensitive And Rapid Enzyme Immunoassay Book in PDF and EPUB Free Download. You can read online Ultrasensitive And Rapid Enzyme Immunoassay and write the review.

Immunoassay techniques have become essential in various fields of pure and applied research. This volume of the well known Laboratory Techniques series will be of assistance to those who have plans or are making efforts to develop ultrasensitive enzyme immunoassays for antigens and antibodies. The volume describes factors limiting the sensitivity of noncompetitive solid phase enzyme immunoassays, methods to overcome difficulties limiting sensitivities, methods to perform ultrasensitive enzyme immunoassays as rapidly as possible, and protocols of enzyme labeling and enzyme assays as well as ultrasensitive enzyme immunoassays. Ultrasensitive and Rapid Enzyme Immunoassay, with its clear presentation and up-to-date information, will be essential to scientists in pharmaceutical companies and in applied research.
Immunoassay techniques have become essential in various fields of pure and applied research. This guide describes many of the techniques used in this field, how to avoid and overcome obstacles encountered, and some of the theory behind the methods.
Since the publication of the first edition of Chemistry of Protein Conjugation and Cross-Linking in 1991, new cross-linking reagents, notably multifunctional cross-linkers, have been developed and synthesized. The completion of the human genome project has opened a new area for studying nucleic acid and protein interactions using nucleic acid cross-linking reagents, and advances have also been made in the area of biosensors and microarray biochips for the detection and analysis of genes, proteins, and carbohydrates. In addition, developments in physical techniques with unprecedented sensitivity and resolution have facilitated the analysis of cross-linked products. Updated to reflect the advances of the 21st century, this book offers: An overview of the chemical principles underlying the processes of cross-linking and conjugation A thorough list of cross-linking reagents published in the literature since the first edition, covering monofunctional, homobifunctional, heterobifunctional, multifunctional, and zero-length cross-linkers Reviews of the use of these reagents in studying protein tertiary structures, geometric arrangements of subunits within complex proteins and nucleic acids, near-neighbor analysis, protein-to-protein or ligand–receptor interactions, and conformational changes of biomolecules Discusses the application of immunoconjugation for immunoassays, immunotoxins for targeted therapy, microarray technology for analysis of various biomolecules, and solid state chemistry for immobilizations
Each chapter of this book aims to explore the basic physical and chemical principles involved in the immunoassay techniques discussed. The book also looks at the optimization and limitations of methodology and concludes with a brief overview of the application of the performance of the technology.
This book shows the various sandwich assays that are constructed from recognition molecules, such as antibodies, oligonucleotide sequences and aptamers, developed as a result of nano- and biotechnology advances. It consists of ten chapters presenting interesting examples of these assays, organized according to the type of analytic methods (colorimetric, fluorescence, electrochemical, etc.) and detected objects (protein, nucleic acid, small-molecule, ion, etc.). It also includes a chapter discussing the introduction of sandwich assays as biosensors for the detection of a range of targets. It is an interesting and useful resource for a wide readership in various fields of chemical science and nanotechnology.
Immunosensing for Detection of Protein Biomarkers not only introduces the principles, methods, and classification of immunoassay, but also presents the latest achievements in areas such as electrochemical immunosensors, nanoprobe-based immunoassay, chemiluminescence immunoassay, electrochemiluminescent immunoassay, multianalyte immunoassay, optical imaging for immunoassay, signal amplification for immunoassay, and so on. In recent years, immunosensing and immunoassay methods have attracted considerable interest due to their applications in different fields, particularly clinical diagnosis. Although a large number of academic papers in immunosensing and immunoassay have been published in different journals recently, it is still a difficult and time-consuming task for researchers, especially those new to the area, to understand the principles, methods, and research progress of immunosensing. Based on the research experience of the authors and their research groups, this book offers readers with new research ideas to develop immunosensing methodology. As a monograph, it offers deeper and more complete coverage than review papers, which only report certain aspects of progress. Grounded in the research experience of Professor Ju’s research group, the book focuses on immunosensing for detection of protein biomarkers, summarizing understanding, research, and practice on immunosensing methodology in detection of protein biomarkers. Presents the latest research and thinking on immunosensing for detection of protein biomarkers Offers current techniques, and looks to the development of new methodologies Offers the latest developments in various aspects of immunosensing, including electrochemiluminescent immunoassay, multianalyte immunoassay, optical imaging immunoassay, and signal amplification immunoassay Offers readers new ideas to research and develop immunosensing methodologies for the future
This book offers comprehensive information on all aspects of ELISA, starting with the fundamentals of the immune system. It also reviews the history of analytical assays prior to the advent of ELISA (enzyme-linked immunosorbent assay) and addresses the materials of choice for the fabrication of the platforms, possible biomolecular interactions, different protocols, and evaluation parameters. The book guides readers through the respective steps of the analytical assay, while also familiarizing them with the possible sources of error in the assay. It offers detailed insights into the immobilization techniques used for protein attachment, as well as methods for evaluating the assay and calculating the key parameters, such as sensitivity, specificity, accuracy and limit of detection. In addition, the book explores the advantages and shortcomings of the conventional ELISA, as well as various approaches to improving its performance. In this regard, merging and integrating other technologies with widely known ELISAs have opened new avenues for the advancement of this immunoassay. Accordingly, the book provides cutting-edge information on integrated platforms such as ELISpot, plasmonic ELISAs, sphere-/bead-based ELISAs, paper-/fiber-based ELISAs and ELISA in micro-devices.
The development of advanced methods for isolation, identification and quantification of old and new inositol lipids and inositol phosphtes from natural and synthetic systems has been a major advancing force in phosphoinositol research. The writing of this book was undertaken as an opportunity fo examine the analytical validity of the biochemical transformations that constitute the basis of the lipid signaling pathways.