Download Free Ultrafast Vibrational Dynamics At The Solid Water Interface Book in PDF and EPUB Free Download. You can read online Ultrafast Vibrational Dynamics At The Solid Water Interface and write the review.

The advent of laser-based sources of ultrafast infrared pulses has extended the study of very fast molecular dynamics to the observation of processes manifested through their effects on the vibrations of molecules. In addition, non-linear infrared spectroscopic techniques make it possible to examine intra- and intermolecular interactions and how such interactions evolve on very fast time scales, but also in some instances on very slow time scales. Ultrafast Infrared Vibrational Spectroscopy is an advanced overview of the field of ultrafast infrared vibrational spectroscopy based on the scientific research of the leading figures in the field. The book discusses experimental and theoretical topics reflecting the latest accomplishments and understanding of ultrafast infrared vibrational spectroscopy. Each chapter provides background, details of methods, and explication of a topic of current research interest. Experimental and theoretical studies cover topics as diverse as the dynamics of water and the dynamics and structure of biological molecules. Methods covered include vibrational echo chemical exchange spectroscopy, IR-Raman spectroscopy, time resolved sum frequency generation, and 2D IR spectroscopy. Edited by a recognized leader in the field and with contributions from top researchers, including experimentalists and theoreticians, this book presents the latest research methods and results. It will serve as an excellent resource for those new to the field, experts in the field, and individuals who want to gain an understanding of particular methods and research topics.
Volume 23 of Reviews in Mineralogy and accompanying MSA short course covers chemical reactions that take place at mineral-water interfaces. We believe that this book describes most of the important concepts and contributions that have driven mineral-water interface geochemistry to its present state. We begin in Chapter 1 with examples of the global importance of mineral-water interface reactions and a brief review of the contents of the entire book. Thereafter, we have divided the book into four sections, including atomistic approaches (Chapters 2- 3), adsorption (Chapters 4-8), precipitation and dissolution (Chapters 9-11), and oxidation-reduction reactions (Chapters 11-14).
Ultrafast Phenomena XVI presents the latest advances in ultrafast science, including both ultrafast optical technology and the study of ultrafast phenomena. It covers picosecond, femtosecond and attosecond processes relevant to applications in physics, chemistry, biology, and engineering. Ultrafast technology has a profound impact in a wide range of applications, amongst them biomedical imaging, chemical dynamics, frequency standards, material processing, and ultrahigh speed communications. This book summarizes the results presented at the 16th International Conference on Ultrafast Phenomena and provides an up-to-date view of this important and rapidly advancing field.
Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry, Seven Volume Set summarizes current, fundamental knowledge of interfacial chemistry, bringing readers the latest developments in the field. As the chemical and physical properties and processes at solid and liquid interfaces are the scientific basis of so many technologies which enhance our lives and create new opportunities, its important to highlight how these technologies enable the design and optimization of functional materials for heterogeneous and electro-catalysts in food production, pollution control, energy conversion and storage, medical applications requiring biocompatibility, drug delivery, and more. This book provides an interdisciplinary view that lies at the intersection of these fields. Presents fundamental knowledge of interfacial chemistry, surface science and electrochemistry and provides cutting-edge research from academics and practitioners across various fields and global regions
A unified overview of the dynamical properties of water and its unique and diverse role in biological and chemical processes.
This book presents the latest advances in ultrafast science, including both ultrafast optical technology and the study of ultrafast phenomena. It covers picosecond, femtosecond, and attosecond processes relevant to applications in physics, chemistry, biology, and engineering. Ultrafast technology has a profound impact in a wide range of applications, amongst them biomedical imaging, chemical dynamics, frequency standards, material processing, and ultrahigh-speed communications. This book summarizes the results presented at the 19th International Conference on Ultrafast Phenomena and provides an up-to-date view of this important and rapidly advancing field.
Optical second harmonic and sum-frequency generation has evolved into a useful spectroscopic tool for material characterization, especially as a viable and powerful technique for probing surfaces and interfaces. This book serves as an introduction on the technique. It provides a comprehensible description on the basics of the technique and gives detailed accounts with illustrating examples on the wide range of applications of the technique. It clearly points out the unique capabilities of the technique as a spectroscopic tool for studies of bulk and interface structures in different disciplines.This book is an updated version of an earlier book on the same subject, but it puts more emphasis on physical concepts and description. It underscores recent advances of sum-frequency spectroscopy at the technical front as well as over its wide range of applications, with the author's perspective in each area. Most chapters end with a section of summary and prospects that hopefully can help stimulate interest to further develop the technique and explore possibilities of applying the technique.
Remarkable developments in the spectroscopy field regarding ultrashort pulse generation have led to the possibility of producing light pulses ranging from 50 to5 fs and frequency tunable from the near infrared to the ultraviolet range. Such pulses enable us to follow the coupling of vibrational motion to the electronic transitions in molecules and
This book contains important contributions from top international scientists on the-state-of-the-art of femtochemistry and femtobiology at the beginning of the new millennium. It consists of reviews and papers on ultrafast dynamics in molecular science.The coverage of topics highlights several important features of molecular science from the viewpoint of structure (space domain) and dynamics (time domain). First of all, the book presents the latest developments, such as experimental techniques for understanding ultrafast processes in gas, condensed and complex systems, including biological molecules, surfaces and nanostructures. At the same time it stresses the different ways to control the rates and pathways of reactive events in chemistry and biology. Particular emphasis is given to biological processes as an area where femtodynamics is becoming very useful for resolving the structural dynamics from techniques such as electron diffraction, and X-ray and IR spectroscopy. Finally, the latest developments in quantum control (in both theory and experiment) and the experimental pulse-shaping techniques are described.
This book presents the state-of-the-art in supercomputer simulation. It includes the latest findings from leading researchers using systems from the High Performance Computing Center Stuttgart (HLRS) in 2020. The reports cover all fields of computational science and engineering ranging from CFD to computational physics and from chemistry to computer science with a special emphasis on industrially relevant applications. Presenting findings of one of Europe’s leading systems, this volume covers a wide variety of applications that deliver a high level of sustained performance. The book covers the main methods in high-performance computing. Its outstanding results in achieving the best performance for production codes are of particular interest for both scientists and engineers. The book comes with a wealth of color illustrations and tables of results.