Download Free Ultracold Quantum Gases In Time Averaged Adiabatic Potentials Book in PDF and EPUB Free Download. You can read online Ultracold Quantum Gases In Time Averaged Adiabatic Potentials and write the review.

This volume provides a broad overview of the principal theoretical techniques applied to non-equilibrium and finite temperature quantum gases. Covering Bose-Einstein condensates, degenerate Fermi gases, and the more recently realised exciton-polariton condensates, it fills a gap by linking between different methods with origins in condensed matter physics, quantum field theory, quantum optics, atomic physics, and statistical mechanics.
The book addresses several aspects of thermodynamics and correlations in the strongly-interacting regime of one-dimensional bosons, a topic at the forefront of current theoretical and experimental studies. Strongly correlated systems of one-dimensional bosons have a long history of theoretical study. Their experimental realisation in ultracold atom experiments is the subject of current research, which took off in the early 2000s. Yet these experiments raise new theoretical questions, just begging to be answered. Correlation functions are readily available for experimental measurements. In this book, they are tackled by means of sophisticated theoretical methods developed in condensed matter physics and mathematical physics, such as bosonization, the Bethe Ansatz and conformal field theory. Readers are introduced to these techniques, which are subsequently used to investigate many-body static and dynamical correlation functions.
This book derives from the content of graduate courses on cold atomic gases, taught at the Renmin University of China and at the University of Science and Technology of China. It provides a brief review on the history and current research frontiers in the field of ultracold atomic gases, as well as basic theoretical description of few- and many-body physics in the system. Starting from the basics such as atomic structure, atom-light interaction, laser cooling and trapping, the book then moves on to focus on the treatment of ultracold Fermi gases, before turning to topics in quantum simulation using cold atoms in optical lattices.The book would be ideal not only for professionals and researchers, but also for familiarizing junior graduate students with the subject and aiding them in their preparation for future study and research in the field.
This book provides authoritative tutorials on the most recent achievements in the field of quantum gases at the interface between atomic physics and quantum optics, condensed matter physics, nuclear and high-energy physics, non-linear physics, and quantum information.
Advances in Atomic, Molecular, and Optical Physics, Volume 66 provides a comprehensive compilation of recent developments in a field that is in a state of rapid growth. New to this volume are chapters devoted to 2D Coherent Spectroscopy of Electronic Transitions, Nonlinear and Quantum Optical Properties and Applications of Intense Twin-Beams, Non-classical Light Generation from III-V and Group-IV Solid-State Cavity Quantum Systems, Trapping Atoms with Radio Frequency Adiabatic Potentials, Quantum Control of Optomechanical Systems, and Efficient Description of Bose–Einstein Condensates in Time-Dependent Rotating Traps. With timely articles written by distinguished experts that contain relevant review materials and detailed descriptions of important developments in the field, this series is a must have for those interested in the variety of topics covered. - Presents the work of international experts in the field - Contains comprehensive articles that compile recent developments in a field that is experiencing rapid growth, with new experimental and theoretical techniques emerging - Ideal for users interested in optics, excitons, plasmas, and thermodynamics - Topics covered include atmospheric science, astrophysics, surface physics, and laser physics, amongst others
Quantum Thermodynamics is a novel research field which explores the emergence of thermodynamics from quantum theory and addresses thermodynamic phenomena which appear in finite-size, non-equilibrium and finite-time contexts. Blending together elements from open quantum systems, statistical mechanics, quantum many-body physics, and quantum information theory, it pinpoints thermodynamic advantages and barriers emerging from genuinely quantum properties such as quantum coherence and correlations. Owing to recent experimental efforts, the field is moving quickly towards practical applications, such as nano-scale heat devices, or thermodynamically optimised protocols for emergent quantum technologies. Starting from the basics, the present volume reviews some of the most recent developments, as well as some of the most important open problems in quantum thermodynamics. The self-contained chapters provide concise and topical introductions to researchers who are new to the field. Experts will find them useful as a reference for the current state-of-the-art. In six sections the book covers topics such as quantum heat engines and refrigerators, fluctuation theorems, the emergence of thermodynamic equilibrium, thermodynamics of strongly coupled systems, as well as various information theoretic approaches including Landauer's principle and thermal operations. It concludes with a section dedicated to recent quantum thermodynamics experiments and experimental prospects on a variety of platforms ranging from cold atoms to photonic systems, and NV centres.
“French Nobel Laureate Claude Cohen-Tannoudji is second to none in his understanding of the modern theory and application of atom-photon interactions. He is also known for his lucid and accessible writing style … Advances in Atomic Physics is an impressive and wonderful-to-read reference text … Certainly researchers in the fields of atom-photon interactions and atom traps will want it as a reference on their bookshelves … A selection of chapters may be of benefit to students: the early chapters for those entering the field, the later chapters for those already doing atom-laser PhD thesis work.”Physics TodayThis book presents a comprehensive overview of the spectacular advances seen in atomic physics during the last 50 years. The authors explain how such progress was possible by highlighting connections between developments that occurred at different times. They discuss the new perspectives and the new research fields that look promising. The emphasis is placed, not on detailed calculations, but rather on physical ideas. Combining both theoretical and experimental considerations, the book will be of interest to a wide range of students, teachers and researchers in quantum and atomic physics.
This book is a printed edition of the Special Issue "Guided-Wave Optics" that was published in Applied Sciences
The rapidly developing topic of ultracold atoms has many actual and potential applications for condensed-matter science, and the contributions to this book emphasize these connections. Ultracold Bose and Fermi quantum gases are introduced at a level appropriate for first-year graduate students and non-specialists such as more mature general physicists. The reader will find answers to questions like: how are experiments conducted and how are the results interpreted? What are the advantages and limitations of ultracold atoms in studying many-body physics? How do experiments on ultracold atoms facilitate novel scientific opportunities relevant to the condensed-matted community? This volume seeks to be comprehensible rather than comprehensive; it aims at the level of a colloquium, accessible to outside readers, containing only minimal equations and limited references. In large part, it relies on many beautiful experiments from the past fifteen years and their very fruitful interplay with basic theoretical ideas. In this particular context, phenomena most relevant to condensed-matter science have been emphasized. - Introduces ultracold Bose and Fermi quantum gases at a level appropriate for non-specialists - Discusses landmark experiments and their fruitful interplay with basic theoretical ideas - Comprehensible rather than comprehensive, containing only minimal equations
Quantum phenomena of many-particle systems are fascinating in their complexity and are consequently not fully understood and largely untapped in terms of practical applications. Ultracold gases provide a unique platform to build up model systems of quantum many-body physics with highly controlled microscopic constituents. In this way, many-body quantum phenomena can be investigated with an unprecedented level of precision, and control and models that cannot be solved with present day computers may be studied using ultracold gases as a quantum simulator.This book addresses the need for a comprehensive description of the most important advanced experimental methods and techniques that have been developed along with the theoretical framework in a clear and applicable format. The focus is on methods that are especially crucial in probing and understanding the many-body nature of the quantum phenomena in ultracold gases and most topics are covered both from a theoretical and experimental viewpoint, with interrelated chapters written by experts from both sides of research.Graduate students and post-doctoral researches working on ultracold gases will benefit from this book, as well as researchers from other fields who wish to gain an overview of the recent fascinating developments in this very dynamically evolving field. Sufficient level of both detailed high level research and a pedagogical approach is maintained throughout the book so as to be of value to those entering the field as well as advanced researchers. Furthermore, both experimentalists and theorists will benefit from the book; close collaboration between the two are continuously driving the field to a very high level and will be strengthened to continue the important progress yet to be made in the field.