Download Free Ultra High Performance Concrete Composite Connections For Precast Concrete Bridge Decks Book in PDF and EPUB Free Download. You can read online Ultra High Performance Concrete Composite Connections For Precast Concrete Bridge Decks and write the review.

"The demand for accelerated construction of highway bridges and the historically sub-optimal performance of cast-in-place bridge decks has led to a demand for the use of prefabricated concrete bridge decks. Although this decking system presents many advantages, one fundamental hurdle to its use is the field-cast connections which join the panels to the supporting superstructure. The intent of this research project is to redesign the composite connection in a way that provides for simple, constructible details which do not present field fit-up issues and which provide good long-term durability performance. A relatively new construction material, ultra-high performance concrete (UHPC), was engaged for this project"--Technical report documentation page.
With HiPerMat 5 on March 11-13, 2020 the 5th International Symposium on Ultra-High Performance Concrete and High Performance Construction Materials documents the actual state of development of application in the fields of: Material Science and Development, Composite Concrete Materials, Strength and Deformation behaviour of UHPC, Durability and Sustainability of UHPC, Design and Construction with UHPC, Structural Modelling and Optimisation, Lightweight Concrete Structures, High-Precision Manufacturing for Pre-Fabrication, Nanotechnology for Construction Materials, Innovative Applications, Smart Construction Materials, This volume contains the short versions (two pages) of all contributions that have been accepted for publication at HiPerMat 5.
Innovative Bridge Structures Based on Ultra-High Performance Concrete (UHPC): Theory, Experiments and Applications introduces more than a dozen innovative bridge structures and engineering applications developed by the author's team based on UHPC. As the new bridge structure developed by UHPC can make outstanding contributions to the realization of the "carbon peaking and carbon neutrality goals" and "sustainable development," and since recent studies have shown that the application of UHPC is expected to greatly reduce the amount of materials and carbon emissions and prolong the life of the structure, this book is an ideal update on the topic. For example, after calculation, when UHPC is applied to the arch bridge with compression as the main stress characteristic, compared with the steel arch bridge, the dead weight of the UHPC arch bridge is basically the same, and the cost and carbon emission are only 34% and 20% of the latter. Ultra-high performance concrete (UHPC) as a new generation of civil structural materials has the characteristics of high strength, high toughness and high durability. Through the collaborative innovation of new materials and new structures, the application of UHPC in bridge engineering is expected to achieve the goal of economical, environmentally-friendly, durable and high performance of the main structure. - Teachers readers about the new structures and technologies in bridge engineering developed by the author's team based on UHPC - Provides relevant experimental studies and the mechanical properties of different UHPC structures - Helps users understand the design method and calculation theory of UHPC bridge structures - Covers the characteristics and advantages of new UHPC structures and technologies applied to engineering
Ultra-high performance concrete (UHPC) is an advanced construction material that affords new opportunities for the future of the highway infrastructure. The Federal Highway Administration has been engaged in research on the optimal uses of UHPC in the highway bridge infrastructure since 2001 through its Bridge of the Future initiative. This report presents the state of the art in UHPC with regard to uses in the highway transportation infrastructure. Compiled from hundreds of references representing research, development, and deployment efforts around the world, this report provides a framework for gaining a deeper understanding of UHPC as well as a platform from which to increase the use of this class of advanced cementitious composite materials. This report will assist stakeholders, including State transportation departments, researchers, and design consultants, to grasp the capabilities of UHPC and thus use the material to address pressing needs in the highway transportation infrastructure.
Ultra-high performance concrete (UHPC) is an advanced cement-based composite material with compressive strength of over 120 MPa, high toughness, and superior durability. Since its development in the early 1990s, UHPC has attracted great interest worldwide due to its advantages. This book covers material selection and mixture design methods for developing UHPC, as well as the performance of UHPC, including fresh and hardened properties, setting and hardening, dimensional stability, static and dynamic properties, durability, long-term properties, and self-healing properties. A range of potential applications and case studies are presented to illustrate how UHPC meets requirements for lightweight, high-rise, large-span, heavy-load bearing, fast-construction, and highly durable structures in civil and construction engineering. Also introduced is a typical new concrete, seawater sea-sand UHPC, which avoids the use of freshwater and river sand in marine construction. The first book to fully cover the design, performance, and applications of UHPC, this is ideal for concrete technologists, designers, contractors, and researchers.