Download Free Ultra Dense Heterogeneous Networks Book in PDF and EPUB Free Download. You can read online Ultra Dense Heterogeneous Networks and write the review.

Driven by the ever-increasing amount of mobile data, cellular networks evolve from small cell network to ultra-dense heterogeneous networks, to provide high system capacity and spectrum efficiency. By bringing base stations (BSs) to the approximate spatial scale and number magnitude, ultra-dense heterogeneous networks would definitely bring unprecedented paradigm changes to the network design. Firstly, along with densification of small cells, inter-cell interference becomes severe and may deteriorate performance of mobile users. Assigning network resources including bandwidth and time slots, while avoiding interference, desires serious consideration. Secondly, the coverage area of BSs becomes small and irregular, resulting in much frequent and complicated handovers when mobile users move around. How to ensure continuous communication and implement effective mobility management, and inter-cell resource allocation and cooperation, remains a challenging issue. Thirdly, such dynamic change in spatial dimension enables us to re-investigate available and ongoing communications and networking techniques, such as massive MIMO, CoMP, millimeter waves (mmWaves), carrier aggregation, full duplex radio, and D2D communications. To address the aforementioned challenging research issues, this book will investigate the service and QoE provisioning in ultra-dense heterogeneous networks. In particular, firstly we introduce ultra-dense heterogeneous networks by careful definition regarding spatial deployment, generic characteristics, and requirements of ultra-dense heterogeneous networks in order to ensure QoE of mobile users. Secondly, we depict the resource management among small cells in close proximity, mobility management for mobile users (address the super-frequent handovers), and interference management (dealing with the interference due to frequency-reuse in the vicinity). Thirdly, we study the enabling factors, and the integration of ultra-dense heterogeneous networks with enabling technologies, such as massive-MIMO, cloud-RAN, mmWaves, D2D, IoT. Finally, we conclude the book and indicate future directions and challenges.
Offers comprehensive insight into the theory, models, and techniques of ultra-dense networks and applications in 5G and other emerging wireless networks The need for speed—and power—in wireless communications is growing exponentially. Data rates are projected to increase by a factor of ten every five years—and with the emerging Internet of Things (IoT) predicted to wirelessly connect trillions of devices across the globe, future mobile networks (5G) will grind to a halt unless more capacity is created. This book presents new research related to the theory and practice of all aspects of ultra-dense networks, covering recent advances in ultra-dense networks for 5G networks and beyond, including cognitive radio networks, massive multiple-input multiple-output (MIMO), device-to-device (D2D) communications, millimeter-wave communications, and energy harvesting communications. Clear and concise throughout, Ultra-Dense Networks for 5G and Beyond - Modelling, Analysis, and Applications offers a comprehensive coverage on such topics as network optimization; mobility, handoff control, and interference management; and load balancing schemes and energy saving techniques. It delves into the backhaul traffic aspects in ultra-dense networks and studies transceiver hardware impairments and power consumption models in ultra-dense networks. The book also examines new IoT, smart-grid, and smart-city applications, as well as novel modulation, coding, and waveform designs. One of the first books to focus solely on ultra-dense networks for 5G in a complete presentation Covers advanced architectures, self-organizing protocols, resource allocation, user-base station association, synchronization, and signaling Examines the current state of cell-free massive MIMO, distributed massive MIMO, and heterogeneous small cell architectures Offers network measurements, implementations, and demos Looks at wireless caching techniques, physical layer security, cognitive radio, energy harvesting, and D2D communications in ultra-dense networks Ultra-Dense Networks for 5G and Beyond - Modelling, Analysis, and Applications is an ideal reference for those who want to design high-speed, high-capacity communications in advanced networks, and will appeal to postgraduate students, researchers, and engineers in the field.
This book features a collection of high-quality research papers presented at the International Conference on Intelligent and Cloud Computing (ICICC 2019), held at Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India, on December 20, 2019. Including contributions on system and network design that can support existing and future applications and services, it covers topics such as cloud computing system and network design, optimization for cloud computing, networking, and applications, green cloud system design, cloud storage design and networking, storage security, cloud system models, big data storage, intra-cloud computing, mobile cloud system design, real-time resource reporting and monitoring for cloud management, machine learning, data mining for cloud computing, data-driven methodology and architecture, and networking for machine learning systems.
Driven by the ever-increasing amount of mobile data, cellular networks evolve from small cell network to ultra-dense heterogeneous networks, to provide high system capacity and spectrum efficiency. By bringing base stations (BSs) to the approximate spatial scale and number magnitude, ultra-dense heterogeneous networks would definitely bring unprecedented paradigm changes to the network design. Firstly, along with densification of small cells, inter-cell interference becomes severe and may deteriorate performance of mobile users. Assigning network resources including bandwidth and time slots, while avoiding interference, desires serious consideration. Secondly, the coverage area of BSs becomes small and irregular, resulting in much frequent and complicated handovers when mobile users move around. How to ensure continuous communication and implement effective mobility management, and inter-cell resource allocation and cooperation, remains a challenging issue. Thirdly, such dynamic change in spatial dimension enables us to re-investigate available and ongoing communications and networking techniques, such as massive MIMO, CoMP, millimeter waves (mmWaves), carrier aggregation, full duplex radio, and D2D communications. To address the aforementioned challenging research issues, this book will investigate the service and QoE provisioning in ultra-dense heterogeneous networks. In particular, firstly we introduce ultra-dense heterogeneous networks by careful definition regarding spatial deployment, generic characteristics, and requirements of ultra-dense heterogeneous networks in order to ensure QoE of mobile users. Secondly, we depict the resource management among small cells in close proximity, mobility management for mobile users (address the super-frequent handovers), and interference management (dealing with the interference due to frequency-reuse in the vicinity). Thirdly, we study the enabling factors, and the integration of ultra-dense heterogeneous networks with enabling technologies, such as massive-MIMO, cloud-RAN, mmWaves, D2D, IoT. Finally, we conclude the book and indicate future directions and challenges.
This volume bears on wireless network modeling and performance analysis. The aim is to show how stochastic geometry can be used in a more or less systematic way to analyze the phenomena that arise in this context. It first focuses on medium access control mechanisms used in ad hoc networks and in cellular networks. It then discusses the use of stochastic geometry for the quantitative analysis of routing algorithms in mobile ad hoc networks. The appendix also contains a concise summary of wireless communication principles and of the network architectures considered in the two volumes.
A timely publication providing coverage of radio resourcemanagement, mobility management and standardization inheterogeneous cellular networks The topic of heterogeneous cellular networks has gained momentumin industry and the research community, attracting the attention ofstandardization bodies such as 3GPP LTE and IEEE 802.16j, whoseobjectives are looking into increasing the capacity and coverage ofthe cellular networks. This book focuses on recentprogresses, covering the related topics including scenariosof heterogeneous network deployment, interference management in theheterogeneous network deployment, carrier aggregation in aheterogeneous network, cognitive radio, cell selection/reselectionand load balancing, mobility and handover management, capacity andcoverage optimization for heterogeneous networks, trafficmanagement and congestion control. This book enables readers to better understand the technicaldetails and performance gains that are madepossible by this state-of-the-art technology. It contains theinformation necessary for researchers and engineers wishing tobuild and deploy highly efficient wireless networks themselves. Toenhance this practical understanding, the book is structured tosystematically lead the reader through a series of case-studies ofreal world scenarios. Key features: Presents this new paradigm in cellular network domain: aheterogeneous network containing network nodes with differentcharacteristics such as transmission power and RF coveragearea Provides a clear approach by containing tables, illustrations,industry case studies, tutorials and examples to cover the relatedtopics Includes new research results and state-of-the-arttechnological developments and implementation issues
Understand the theory, key technologies and applications of UDNs with this authoritative survey.
A comprehensive text dedicated to ultra-dense networks, covering fundamental theory and practical applications.
This brief focuses on introducing a novel mathematical framework, referred as hypergraph theory, to model and solve the multiple interferer scenarios for future wireless communication networks. First, in Chap. 1, the authors introduce the basic preliminaries of hypergraph theory in general, and develop two hypergraph based polynomial algorithms, i.e., hypergraph coloring and hypergraph clustering. Then, in Chaps. 2 and 3, the authors present two emerging applications of hypergraph coloring and hypergraph clustering in Device-to-Device (D2D) underlay communication networks, respectively, in order to show the advantages of hypergraph theory compared with the traditional graph theory. Finally, in Chap. 4, the authors discuss the limitations of using hypergraph theory in future wireless networks and briefly present some other potential applications. This brief introduces the state-of-the-art research on the hypergraph theory and its applications in wireless communications. An efficient framework is provided for the researchers, professionals and advanced level students who are interested in the radio resource allocation in the heterogeneous networks to solve the resource allocation and interference management problems.
The first and only up-to-date guide offering complete coverage of HetNets—written by top researchers and engineers in the field Small Cell Networks: Deployment, Management, and Optimization addresses key problems of the cellular network evolution towards HetNets. It focuses on the latest developments in heterogeneous and small cell networks, as well as their deployment, operation, and maintenance. It also covers the full spectrum of the topic, from academic, research, and business to the practice of HetNets in a coherent manner. Additionally, it provides complete and practical guidelines to vendors and operators interested in deploying small cells. The first comprehensive book written by well-known researchers and engineers from Nokia Bell Labs, Small Cell Networks begins with an introduction to the subject—offering chapters on capacity scaling and key requirements of future networks. It then moves on to sections on coverage and capacity optimization, and interference management. From there, the book covers mobility management, energy efficiency, and small cell deployment, ending with a section devoted to future trends and applications. The book also contains: The latest review of research outcomes on HetNets based on both theoretical analyses and network simulations Over 200 sources from 3GPP, the Small Cell Forum, journals and conference proceedings, and all prominent topics in HetNet An overview of indoor coverage techniques such as metrocells, picocells and femtocells, and their deployment and optimization Real case studies as well as innovative research results based on both simulation and measurements Detailed information on simulating heterogeneous networks as used in the examples throughout the book Given the importance of HetNets for future wireless communications, Small Cell Networks: Deployment, Management, and Optimization is sure to help decision makers as they consider the migration of services to HetNets. It will also appeal to anyone involved in information and communication technology.