Download Free Two Dimensional Modelling Of Rivers With Flood Plains Book in PDF and EPUB Free Download. You can read online Two Dimensional Modelling Of Rivers With Flood Plains and write the review.

A two-dimensional horizontal finite element numerical model (RMA-2) was applied to a 15 mile (24 km) river channel-floodplain reach in West Germany. Previous applications of such models have been restricted to much smaller scales. The results indicate that finite element schemes may successfully estimate river stage in large scale floodplain applications. Computed stage hydrographs compared well with observed data using loss coefficients within expected ranges. Two-dimensional flow models have been applied to certain classes of river channel problems. Applications have included detailed analyses of flow patterns near structures such as bridges and floodplains. In all these problems the scale of interest has been small, e.g. reaches of river a few river widths long. Many estuary studies have been done that were of large scale; some of these utilized a hybrid (numerical plus physical) modeling technique. In a review of the application of finite element methods to river channels, Samuels reported that the river channel was resolved separately from the floodplain in only two studies. Missing in previous work is attention to large scale floodplain modeling. The work reported in this paper focuses on the feasibility and accuracy of applying a two-dimensional flow model to a large floodplain. Traditional floodplain studies have used semi-empirical flow routing with steady, one-dimensional computation of water surface elevations to define inundated areas. Keywords: Army Corps of Engines. (kr).
Rivers and Floodplains is concerned with the origin, geometry, water flow, sediment transport, erosion and deposition associated with modern alluvial rivers and floodplains, how they vary in time and space, and how this information is used to interpret deposits of ancient rivers and floodplains. There is specific reference to the types and lifestyles of organisms associated with fluvial environments, human interactions with rivers and floodplains, associated environmental and engineering concerns, as well as the economic aspects of fluvial deposits, particularly the modeling of fluvial hydrocarbon reservoirs and aquifers. Methods of studying rivers and floodplains and their deposits are also discussed. Although basic principles are emphasized, many examples are detailed. Particular emphasis is placed on how an understanding of the nature of modern rivers and floodplains is required before any problems concerning rivers and floodplains, past or present, can be addressed rationally. Rivers and Floodplains is designed as a core text for senior undergraduate and graduate students studying modern or ancient fluvial environments, particularly in earth sciences, environmental sciences and physical geography, but also in civil and agricultural engineering. College teachers, researchers, and practising professionals will also find the book an invaluable reference. Presents a process-based approach, which is relevant to modern curricula. Discusses methods of studying rivers and floodplains and their deposits. Provides many detailed examples throughout the text. Emphasises the basic principles of this subject. As the first synthesis of this entire field, it will be a must-have for all students studying modern or ancient fluvial environments. Teachers, researchers and practising professionals will find this an invaluable reference tool. Rivers and Floodplains will also be of interest to geologists, geographers and engineers.
This book reviews the U.S. Army Corps of Engineers' (USACE) investigations of flood control options for the American River basin and evaluates flood control feasibility studies for the watershed, with attention to the contingency assumptions, hydrologic methods, and other analyses supporting the flood control options. This book provides detailed comments on many technical issues, including a careful review of the 1991 National Research Council report American River Watershed Investigation, and looks beyond the Sacramento case to broader questions about the nation's approach to flood risk management. It discusses how to utilize information available about flood hazard reduction alternatives for the American River basin, the potential benefits provided by various alternatives, the impacts of alternatives on environmental resources and ecosystems, and the trade-offs inherent in any choice among alternatives which does not lie in the realm of scientists and engineers, but in the arena of public decisionmaking.
Uniquely outlines CFD theory in a manner relevant to environmental applications. This book addresses the basic topics in CFD modelling in a thematic manner to provided the necessary theoretical background, as well as providing global cases studies showing how CFD models can be used in practice demonstrating how good practice can be achieved, with reference to both established and new applications. First book to apply CFD to the environmental sciences Written at a level suitable for non-mathematicians
Last year the Hydrologic Engineering Center (HEC) and the Waterways Experiment Station incorporated the results from more than ten years of research and development into a new version of computer program HEC-6: 'Scour and Deposition in Rivers and Reservoirs' (HEC, 1977). Because of the extensive modifications made to HEC-6, an entirely new User's Manual was also prepared. HEC released a Beta Test Version of the program in the fall of 1989, for field testing. Public release of the new version of HEC-6 is scheduled for September 1990. This paper describes the present status of the program as of April 1990, the expanded capabilities, and the improved documentation to be included in the forthcoming release of computer program HEC-6. Keywords: Computer programs; User manuals; Sediment transport modeling; Deposition; One-dimensional mobile boundary model; Rivers; Reservoirs. (CP).
Fluvial Geomorphology studies the biophysical processes acting in rivers, and the sediment patterns and landforms resulting from them. It is a discipline of synthesis, with roots in geology, geography, and river engineering, and with strong interactions with allied fields such as ecology, engineering and landscape architecture. This book comprehensively reviews tools used in fluvial geomorphology, at a level suitable to guide the selection of research methods for a given question. Presenting an integrated approach to the interdisciplinary nature of the subject, it provides guidance for researchers and professionals on the tools available to answer questions on river restoration and management. Thoroughly updated since the first edition in 2003 by experts in their subfields, the book presents state-of-the-art tools that have revolutionized fluvial geomorphology in recent decades, such as physical and numerical modelling, remote sensing and GIS, new field techniques, advances in dating, tracking and sourcing, statistical approaches as well as more traditional methods such as the systems framework, stratigraphic analysis, form and flow characterisation and historical analysis. This book: Covers five main types of geomorphological questions and their associated tools: historical framework; spatial framework; chemical, physical and biological methods; analysis of processes and forms; and future understanding framework. Provides guidance on advantages and limitations of different tools for different applications, data sources, equipment and supplies needed, and case studies illustrating their application in an integrated perspective. It is an essential resource for researchers and professional geomorphologists, hydrologists, geologists, engineers, planners, and ecologists concerned with river management, conservation and restoration. It is a useful supplementary textbook for upper level undergraduate and graduate courses in Geography, Geology, Environmental Science, Civil and Environmental Engineering, and interdisciplinary courses in river management and restoration.
This text presents the key findings of the International Symposium held in Delft in 2003, which explored the process of shallow flows. Shallow flows are found in lowland rivers, lakes, estuaries, bays, coastal areas and in density-stratified atmospheres, and may be observed in puddles, as in oceans. They impact on the life and work of a w