Download Free Turbulent Coupling Of The Magnetosphere Ionosphere Through Shear Mode Alfven Waves Book in PDF and EPUB Free Download. You can read online Turbulent Coupling Of The Magnetosphere Ionosphere Through Shear Mode Alfven Waves and write the review.

Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.
Published by the American Geophysical Union as part of the Geophysical Monograph Series, Volume 118. The magnetosphere is an open system that interacts with the solar wind. In this system, solar wind energy continuously permeates different regions of the magnetosphere through electromagnetic processes, which we can well describe in terms of current systems. In fact, our ability to use various methods to study magnetospheric current systems has recently prompted significant progress in our understanding of the phenomenon. Unprecedented coverage of satellite and ground?]based observations has advanced global approaches to magnetospheric current systems, whereas advanced measurements of electromagnetic fields and particles have brought new insights about micro?]processes. Increased computer capabilities have enabled us to simulate the dynamics not only of the terrestrial magnetosphere but also the magnetospheres of other planets. Based on such developments, the present volume revisits outstanding issues about magnetospheric current systems.
The past forty years of space research have seen a substantial improvement in our understanding of the Earth’s magnetosphere and its coupling with the solar wind and interplanetary magnetic ?eld (IMF). The magnetospheric str- ture has been mapped and major processes determining this structure have been de?ned. However, the picture obtained is too often static. We know how the magnetosphere forms via the interaction of the solar wind and IMF with the Earth’s magnetic ?eld. We can describe the steady state for various upstream conditions but do not really understand the dynamic processes leading from one state to another. The main dif?culty is that the magnetosphere is a comp- cated system with many time constants ranging from fractions of a second to days and the system rarely attains a steady state. Two decades ago, it became clear that further progress would require multi-point measurements. Since then, two multi-spacecraft missions have been launched — INTERBALL in 1995/96 and CLUSTER II in 2000. The objectives of these missions d- fered but were complementary: While CLUSTER is adapted to meso-scale processes, INTERBALL observed larger spatial and temporal scales. However, the number of papers taking advantage of both missions simul- neously is rather small.
Published by the American Geophysical Union as part of the Geophysical Monograph Series, Volume 44. Existing models of the plasma distribution and dynamics in magnetosphere / ionosphere systems form a patchwork quilt of different techniques and boundaries chosen to define tractable problems. With increasing sophistication in both observational and modeling techniques has come the desire to overcome these limitations and strive for a more unified description of these systems. On the observational side, we have recently acquired routine access to diagnostic information on the lowest energy bulk plasma, completing our view of the plasma and making possible comparisons with magnetohydrodynamic calculations of plasma moments. On the theoretical side, rising computational capabilities and shrewdly designed computational techniques have permitted the first attacks on the global structure of the magnetosphere. Similar advances in the modeling of neutral atmospheric circulation suggest an emergent capability to globally treat the coupling between plasma and neutral gases. Simultaneously, computer simulation has proven to be a very useful tool for understanding magnetospheric behaviors on smaller space and time scales.
This book provides a systematic introduction to the observation and application of kinetic Alfven waves (KAWs) in various plasma environments, with a special focus on the solar-terrestrial coupling system. Alfven waves are low-frequency and long-wavelength fluctuations that pervade laboratory, space and cosmic plasmas. KAWs are dispersive Alfven waves with a short wavelength comparable to particle kinematic scales and hence can play important roles in the energization and transport of plasma particles, the formation of fine magneto-plasma structures, and the dissipation of turbulent Alfven waves. Since the 1990s, experimental studies on KAWs in laboratory and space plasmas have significantly advanced our understanding of KAWs, making them an increasingly interesting subject. Without a doubt, the solar–terrestrial coupling system provides us with a unique natural laboratory for the comprehensive study of KAWs. This book presents extensive observations of KAWs in solar and heliospheric plasmas, as well as numerous applications of KAWs in the solar-terrestrial coupling system, including solar atmosphere heating, solarwind turbulence, solar wind-magnetosphere interactions, and magnetosphere-ionosphere coupling. In addition, for the sake of consistency, the book includes the basic theories and physical properties of KAWs, as well as their experimental demonstrations in laboratory plasmas. In closing, it discusses possible applications of KAWs to other astrophysical plasmas. Accordingly, the book covers all the major aspects of KAWs in a coherent manner that will appeal to advanced graduate students and researchers whose work involves laboratory, space and astrophysical plasmas.