Download Free Tundish Technology For Clean Steel Production Book in PDF and EPUB Free Download. You can read online Tundish Technology For Clean Steel Production and write the review.

The diversity and specialization in orchid floral morphology have fascinated botanists and collectors for centuries. In the past 10 years, the orchid industry has been growing substantially worldwide. This interesting book focuses on the recent advances in orchid biotechnology research since the last 10 years in Taiwan. To advance the orchid industry, enhancement of basic research as well as advanced biotechnology will provide a good platform to improve the flower quality and breeding of new varieties. The important topics covered include the new knowledge of basic genome, through floral morphogenesis, floral ontology, embryogenesis, micropropogation, to functional genomics such as EST, virus-induced gene silencing, and genetic transformation.
Continuous casting of steel has become a widely used process and an important step in steel production. The worldwide share of continuously cast steel has increased significantly in the last 25 years or so. However, concurrent with this increase in production levels are stringent quality requirements that have become crucial in the face of progressively increasing machine throughputs and larger product dimensions. As a result, steel cleanliness and strict composition control are now the primary concern of steelmakers.The tundish is the last metallurgical vessel through which molten metal flows before solidifying in the continuous casting mold. During the transfer of metal through the tundish, molten steel interacts with refractories, slag, and the atmosphere. Thus, the proper design and operation of a tundish are important for delivering steel of strict composition and quality. This pioneering book is the first of its kind to cover all aspects of tundish technology, ranging from fundamental aspects and theory necessary for understanding the basic concepts of tundish operations to operational aspects of the tundish. Written by internationally recognized experts in continuous casting technology in general and tundish technology in particular, this book is sufficiently fundamental to serve as a graduate-level textbook on process metallurgy or as an important reference for metallurgical researchers; at the same time, it is comprehensive enough to contribute to the understanding of scientists and engineers engaged in research and development in the steel industry.
This book promotes understanding of the raw material selection, refractory design, tailor-made refractory developments, refractory properties, and methods of application. It provides a complete analysis of modern iron and steel refractories. It describes the daily demands on modern refractories and describes how these needs can be addressed or improved upon to help achieve the cleanest and largest yields of iron and steel. The text contains end-of-chapter summaries to help reinforce difficult concepts. It also includes problems at the end of chapters to confirm the reader's understanding of topics such as hoop stress modeling in steel ladle and vessels, establishment of thermal gradient modeling , refractory corrosion dynamics, calculation of Blast furnace trough dimension based on thermal modeling, to name a few. Led by editors with backgrounds in both academia and industry, this book can be used in college courses, as a reference for industry professionals, and as an introduction to the technology for those making the transition to industry. Stands as a comprehensive introduction to the science and technology of modern steel and iron-making refractories that examines the processes, construction, and potential improvement of refractory performance and sustainability; Serves as a versatile resource appropriate for all levels, from the student to industry novices to professionals; Reinforces difficult-to-grasp concepts with end-of-chapter summaries; Maximizes reader understanding of key topics, such as refractory selection for steel ladle and vessels, and their corrosion dynamics, with real life problems.
Selected, peer reviewed papers from the 5th International Conference on Manufacturing Science and Engineering (ICMSE 2014), April 19-20, 2014, Shanghai, China
The steelmaking industry and its customers have benefited enormously from the many significant technological advances of the last thirty years. As their customers become ever more quality conscious, however, steelmakers must continue their efforts to minimize harmful impurities, minimize as well as modify harmful nonmetallic inclusions and achieve
Continuous casting is an industrial process whereby molten metal is solidified into a semi-finished billet, bloom, or slab for subsequent rolling in finishing mills; it is the most frequently used process to cast not only steel, but also aluminium and copper alloys. Since its widespread introduction for steel in the 1950s, it has evolved to achieve improved yield, quality, productivity and cost efficiency. It allows lower-cost production of metal sections with better quality, due to the inherently lower costs of continuous, standardized production of a product, as well as providing increased control over the process through automation. Nevertheless, challenges remain and new ones appear, as ways are sought to minimize casting defects and to cast alloys that could originally only be cast via other means. This Special Issue of the journal "Metals" consists of 14 research articles that cover many aspects of experimental work and theoretical modelling related to the ongoing development of continuous casting processes.
The world steel industry is strongly based on coal/coke in ironmaking, resulting in huge carbon dioxide emissions corresponding to approximately 7% of the total anthropogenic CO2 emissions. As the world is experiencing a period of imminent threat owing to climate change, the steel industry is also facing a tremendous challenge in next decades. This themed issue makes a survey on the current situation of steel production, energy consumption, and CO2 emissions, as well as cross-sections of the potential methods to decrease CO2 emissions in current processes via improved energy and materials efficiency, increasing recycling, utilizing alternative energy sources, and adopting CO2 capture and storage. The current state, problems and plans in the two biggest steel producing countries, China and India are introduced. Generally contemplating, incremental improvements in current processes play a key role in rapid mitigation of specific emissions, but finally they are insufficient when striving for carbon neutral production in the long run. Then hydrogen and electrification are the apparent solutions also to iron and steel production. The book gives a holistic overview of the current situation and challenges, and an inclusive compilation of the potential technologies and solutions for the global CO2 emissions problem.