Download Free Troubleshooting Rotating Machinery Book in PDF and EPUB Free Download. You can read online Troubleshooting Rotating Machinery and write the review.

Process machines are critical to the profitability of processes. Safe, efficient and reliable machines are required to maintain dependable manufacturing processes that can create saleable, on-spec product on time, and at the desired production rate. As the wards of process machinery, we wish to keep our equipment in serviceable condition. One of the most challenging aspects of a machinery professional or operator’s job is deciding whether an operating machine should be shut down due to a perceived problem or be allowed to keep operating. If he or she wrongly recommends a repair be conducted, the remaining useful machine life is wasted, but if he or she is right, they can save the organization from severe consequences, such as product releases, fires, costly secondary machine damage, etc. This economic balancing act is at the heart of all machinery assessments. Troubleshooting is part science and part art. Simple troubleshooting tables or decision trees are rarely effective in solving complex, real-world machine problems. For this reason, the authors want to offer a novel way to attack machinery issues that can adversely affect the reliability and efficiency of your plant processes. The methodology presented in this book is not a rigid “cook book” approach but rather a flexible and dynamic process aimed at exploring process plant machines holistically, in order uncover the true nature the problem at hand.
This comprehensivereference/text provides a thorough grounding in the fundamentals of rotating machinery vibration-treating computer model building, sources and types of vibration, and machine vibration signal analysis. Illustrating turbomachinery, vibration severity levels, condition monitoring, and rotor vibration cause identification, Ro
Process machines are critical to the profitability of processes. Safe, efficient and reliable machines are required to maintain dependable manufacturing processes that can create saleable, on-spec product on time, and at the desired production rate. As the wards of process machinery, we wish to keep our equipment in serviceable condition. One of the most challenging aspects of a machinery professional or operator’s job is deciding whether an operating machine should be shut down due to a perceived problem or be allowed to keep operating. If he or she wrongly recommends a repair be conducted, the remaining useful machine life is wasted, but if he or she is right, they can save the organization from severe consequences, such as product releases, fires, costly secondary machine damage, etc. This economic balancing act is at the heart of all machinery assessments. Troubleshooting is part science and part art. Simple troubleshooting tables or decision trees are rarely effective in solving complex, real-world machine problems. For this reason, the authors want to offer a novel way to attack machinery issues that can adversely affect the reliability and efficiency of your plant processes. The methodology presented in this book is not a rigid “cook book” approach but rather a flexible and dynamic process aimed at exploring process plant machines holistically, in order uncover the true nature the problem at hand.
Optimize plant asset safety and reliability while minimizing operating costs with this invaluable guide to the engineering, operation and maintenance of rotating equipment Based upon his multi-volume Rotating Equipment Handbooks, Forsthoffer's Best Practice Handbook for Rotating Machinery summarises, expands and updates the content from these previous books in a convenient all-in-one volume. Offering comprehensive technical coverage and insider information on best practices derived from lessons learned in the engineering, operation and maintenance of a wide array of rotating equipment, this new title presents: - A unique "Best Practice" and "Lessons Learned" chapter framework, providing bite-sized, troubleshooting instruction on complex operation and maintenance issues across a wide array of industrial rotating machinery. - Five chapters of completely new material combined with updated material from earlier volumes, making this the most comprehensive and up-to-date handbook for rotary equipment currently available. Intended for maintenance, engineering, operation and management, Forsthoffer's Best Practice Handbook for Rotating Machinery is a one-stop resource, packed with a lifetime's rotating machinery experience, to help you improve efficiency, safety, reliability and cost. - A unique "Lessons Learned/Best Practices" component opens and acts as a framework for each chapter. Readers not only become familiar with a wide array of industrial rotating machinery; they learn how to operate and maintain it by adopting the troubleshooting perspective that the book provides - Five chapters of completely new material combined with totally updated material from earlier volumes of Forsthoffer's Handbook make this the most comprehensive and up-to-date handbook for rotary equipment currently - Users of Forsthoffer's multi-volume Rotating Equipment Handbooks now have an updated set, with expanded coverage, all in one convenient, reasonably-priced volume
Every operator who is responsible for monitoring critical rotating equipment will greatly benefit from this handy reference book. The goal of this book is to present proven techniques that will enable rookie and veteran operators alike to detect problems early and, we hope, eliminate major outages and/or maintenance costs. To achieve this goal we shall explain the basics of lubrication systems, bearings, drivers, seals and sealing systems, for centrifugal and positive displacement pumps as well as turbines, centrifugal compressors and reciprocating compressors. We will then present common sense inspection methods for centrifugal and positive displacement pumps, gear boxes, motors, heat exchangers, and turbines.
A fully expanded new edition documenting the significant improvements that have been made to the tests and monitors of electrical insulation systems Electrical Insulation for Rotating Machines: Design, Evaluation, Aging, Testing, and Repair, Second Edition covers all aspects in the design, deterioration, testing, and repair of the electrical insulation used in motors and generators of all ratings greater than fractional horsepower size. It discusses both rotor and stator windings; gives a historical overview of machine insulation design; and describes the materials and manufacturing methods of the rotor and stator winding insulation systems in current use (while covering systems made over fifty years ago). It covers how to select the insulation systems for use in new machines, and explains over thirty different rotor and stator winding failure processes, including the methods to repair, or least slow down, each process. Finally, it reviews the theoretical basis, practical application, and interpretation of forty different tests and monitors that are used to assess winding insulation condition, thereby helping machine users avoid unnecessary machine failures and reduce maintenance costs. Electrical Insulation for Rotating Machines: Documents the large array of machine electrical failure mechanisms, repair methods, and test techniques that are currently available Educates owners of machines as well as repair shops on the different failure processes and shows them how to fix or otherwise ameliorate them Offers chapters on testing, monitoring, and maintenance strategies that assist in educating machine users and repair shops on the tests needed for specific situations and how to minimize motor and generator maintenance costs Captures the state of both the present and past “art” in rotating machine insulation system design and manufacture, which helps designers learn from the knowledge acquired by previous generations An ideal read for researchers, developers, and manufacturers of electrical insulating materials for machines, Electrical Insulation for Rotating Machines will also benefit designers of motors and generators who must select and apply electrical insulation in machines.
Forsthoffer's Proven Guidelines for Rotating Machinery Excellence draws on Forsthoffer's 60 years of industry experience to get new operatives up to speed fast. Each of the topics covered are selected based on hard-won knowledge of where problems with rotating machinery originate. This easy to use, highly-illustrated book is designed to elevate the competence of entry level personnel to enable them to immediately contribute to providing optimum rotating machinery reliability for their companies. The first 3 chapters address practical personal rotating machinery awareness, detail how to optimize this awareness to identify "low hanging fruit" safety and reliability improvement opportunities and how to define and implement a cost-effective action plan. The remaining chapters focus on the function of key components in each type of rotating machinery and how to monitor and correct their condition before failure. The last chapter is an RCA (Root Cause Analysis) procedure chapter detailing effective Root Cause Identification before a Failure to prevent a costly failure and the need for a RCFA. - Real-life examples are provided from the field of operation and maintenance of rotating machinery, helping readers to implement effectively - Includes important advice on monitoring approaches for different types of machines, highlighting differences between working with pumps and compressors - A chapter on Root Cause Identification features proven methods to help your organization to prevent machinery failures
Maintenance, Reliability and Troubleshooting in ROTATING MACHINERY This broad collection of current rotating machinery topics, written by industry experts, is a must-have for rotating equipment engineers, maintenance personnel, students, and anyone else wanting to stay abreast with current rotating machinery concepts and technology. Rotating machinery represents a broad category of equipment, which includes pumps, compressors, fans, gas turbines, electric motors, internal combustion engines, and other equipment, that are critical to the efficient operation of process facilities around the world. These machines must be designed to move gases and liquids safely, reliably, and in an environmentally friendly manner. To fully understand rotating machinery, owners must be familiar with their associated technologies, such as machine design, lubrication, fluid dynamics, thermodynamics, rotordynamics, vibration analysis, condition monitoring, maintenance practices, reliability theory, and other topics. The goal of the “Advances in Rotating Machinery” book series is to provide industry practitioners a time-savings means of learning about the most up-to-date rotating machinery ideas and best practices. This three-book series will cover industry-relevant topics, such as design assessments, modeling, reliability improvements, maintenance methods and best practices, reliability audits, data collection, data analysis, condition monitoring, and more. Volume one began the series by focusing on design and analysis. Volume two continues the series by covering important machinery reliability concepts and offering practical reliability improvement ideas. Best-in-class production facilities require exceptional machinery reliability performance. In this volume, exceptional machinery reliability is defined as the ability of critical rotating machines to consistently perform as designed, without degradation or failure, until their next scheduled overhaul. Readers will find this volume chock-full of practical ideas they can use to improve the reliability and efficiency of their machinery. Maintenance, Reliability and Troubleshooting in Rotating Machinery covers, among many other topics: General machinery reliablity advice Understanding failure data Design audits and improvement ideas Maintenace best practices Analyzing failures
ROTATING MACHINERY This third volume in a broad collection of current rotating machinery topics, written by industry experts, is a must-have for rotating equipment engineers, maintenance personnel, students, and anyone else wanting to stay abreast with current rotating machinery concepts and technology. Rotating Machinery Fundamentals and Advances represents a broad category of equipment, which includes pumps, compressors, fans, gas turbines, electric motors, internal combustion engines, etc., that are critical to the efficient operation of process facilities around the world. These machines must be designed to move gases and liquids safely, reliably, and in an environmentally friendly manner. To fully understand rotating machinery, owners must be familiar with their associated technologies, such as machine design, lubrication, fluid dynamics, thermodynamics, rotordynamics, vibration analysis, condition monitoring, maintenance practices, reliability theory, and others. The goal of the “Advances in Rotating Machinery” book series is to provide industry practicioners a time-saving means of learning about the most up-to-date rotating machinery ideas and best practices. This three-book series covers industry-relevant topics, such as design assessments, modeling, reliability improvements, maintenance methods and best practices, reliability audits, data collection, data analysis, condition monitoring, and more. Readers will find a good mix of theory and sage experience throughout this book series. Whether for the veteran engineer, a new hire, technician, or other industry professional, this is a must-have for any library. This outstanding new vcolume includes: Machinery monitoring concepts and best practices Optimizing Lubrication and Lubricant Analysis Machinery troubleshooting Reliability improvement ideas Professional development advice
Rotating Equipment: Maintenance and Troubleshooting has been written on the back of Dr. Watterson’s experience in working with over 20 oil refineries and petrochemical and fertilizer industries worldwide, which spans over 30 years. Every aspect of rotating equipment is explored, from turbines, both gas and steam, compressors, pumps to the use of predictive maintenance equipment. Included in this book is an in-depth explanation of predictive maintenance techniques, such as ultrasound testing, eddy curves, visual testing techniques, such as stroboscope, liquid penetrant, and vibration monitoring. Dr. Watterson also describes clearly the value of online condition-based monitoring of rotating equipment. The primary objective of this book is to show the way to reduce cost and frequency of planned maintenance by detection of abnormalities on equipment’s operating and preset performance parameters.