Download Free Tropical Cyclone Intensity And Structure Changes Theories Observations Numerical Modeling And Forecasting Book in PDF and EPUB Free Download. You can read online Tropical Cyclone Intensity And Structure Changes Theories Observations Numerical Modeling And Forecasting and write the review.

Leading researchers come together in this 2004 text to survey recent developments in atmospheric turbulence and mesoscale meteorology.
This book is a completely rewritten, updated and expanded new edition of the original Global Perspectives on Tropical Cyclones published in 1995. It presents a comprehensive review of the state of science and forecasting of tropical cyclones together with the application of this science to disaster mitigation, hence the tag: From Science to Mitigation.Since the previous volume, enormous progress in understanding tropical cyclones has been achieved. These advances range from the theoretical through to ever more sophisticated computer modeling, all underpinned by a vast and growing range of observations from airborne, space and ocean observation platforms. The growth in observational capability is reflected by the inclusion of three new chapters on this topic. The chapter on the effects of climate change on tropical cyclone activity is also new, and appropriate given the recent intense debate on this issue. The advances in the understanding of tropical cyclones which have led to significant improvements in forecasting track, intensity, rainfall and storm surge, are reviewed in detail over three chapters. For the first time, a chapter on seasonal prediction is included. The book concludes with an important chapter on disaster mitigation, which is timely given the enormous loss of life in recent tropical cyclone disasters.World Scientific Series on Asia-Pacific Weather and Climate is indexed in SCOPUS.
This book is composed of 12 review papers invited for the Palmen Memorial Symposium on Extratropical Cyclones held in Helsinki, Finland, 29 August - 2 September 1988. To celebrate the 90th anniversary of the birth of Professor Erik Palmén, this symposium was organized to give a state-of-the-art picture of research on the structure and dynamics of extratropical cyclones, a topic which Palmén pioneered during the era of advances in aerological analysis. This symposium was organized by the Geophysical Society of Finland and the American Meteorological Society in cooperation with the Danish, Norwegian and Swedish Geophysical Societies. Extratropical Cyclones offers state-of-the-art information on extratropical cyclones, and recent findings by European and American authorities in various subject areas. The first two chapters discuss Palmen's works on cyclones and his early general circulation concepts. The ten chapters following chronicle the advances in understanding cyclones; the theory, structure, and physical processes of cyclones; orographic cyclogenesis; and more. Extratropical Cyclones also contains synoptic case analyses, modeling results, examples of the phenomena discussed, and abundant references. While particular aspects are emphasized in the individual contributions, the book as a whole summarizes the major features of various kinds of extratropical cyclones based on observational analyses, theory and numerical experimentation. This volume is of interest to researchers in dynamic and synoptic meteorology, climatology and mesometeorology, as well as in numerical modeling and weather forecasting. It is also useful for meteorology courses at graduate and upper undergraduate levels.
Technology has propelled the atmospheric sciences from a fledgling discipline to a global enterprise. Findings in this field shape a broad spectrum of decisions--what to wear outdoors, whether aircraft should fly, how to deal with the issue of climate change, and more. This book presents a comprehensive assessment of the atmospheric sciences and offers a vision for the future and a range of recommendations for federal authorities, the scientific community, and education administrators. How does atmospheric science contribute to national well-being? In the context of this question, the panel identifies imperatives in scientific observation, recommends directions for modeling and forecasting research, and examines management issues, including the growing problem of weather data availability. Five subdisciplines--physics, chemistry, dynamics and weather forecasting, upper atmosphere and near-earth space physics, climate and climate change--and their status as the science enters the twenty-first century are examined in detail, including recommendations for research. This readable book will be of interest to public-sector policy framers and private-sector decisionmakers as well as researchers, educators, and students in the atmospheric sciences.
This book if a tribute to one of the leading scientists in meteorology, Dr. David Atlas. It was written by a group of specialists and presented at a symposium to honor Dr. Atlas’ life and career as meteorologist. It serves as a comprehensive resource for scientists and educators, and also as an inspiring historical record of scientific research and important discoveries in the field of meteorology.
This book contains tutorial and review articles as well as specific research letters that cover a wide range of topics: (1) dynamics of atmospheric variability from both basic theory and data analysis, (2) physical and mathematical problems in climate modeling and numerical weather prediction, (3) theories of atmospheric radiative transfer and their applications in satellite remote sensing, and (4) mathematical and statistical methods. The book can be used by undergraduates or graduate students majoring in atmospheric sciences, as an introduction to various research areas; and by researchers and educators, as a general review or quick reference in their fields of interest.
The South China Sea (SCS) is the linkage between the western Pacific Ocean and the Indian Ocean. Its weather/climate variations are regarded as an important factor influencing social and economic development. The SCS and its surrounding regions suffer from various weather disasters (e.g., typhoons, extreme rainfall, sea fog, severe convection, tornado, and wind hazards), which are serious threats to life and property. As such, accurate nowcasting is life-critical in this area. However, it is still a worldwide challenge to improve the forecast accuracy due to less understanding of the formation mechanism, evolution pattern, internal structure, and physical processes. As a dominant physical process, the ocean-atmosphere interaction plays an important role in affecting the weather/climate system and disasters over the SCS and surrounding regions, particularly vertical mixing between the interface of ocean and atmosphere. This research topic aims to provide an in-depth understanding of the physical processes related to these disasters, applications of data assimilation, and the development of forecasting techniques, which are essential to enhance disaster prevention and mitigation capabilities. In addition, in-depth research of these disasters and their impacts could help to uncover the hazard-causing characteristics and establish a corresponding risk assessment system.